Skip to main content

Use of Nanoparticulate Systems for Tackling Neurological Aging

  • Chapter
  • First Online:
Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 13))

  • 432 Accesses

Abstract

In the last chapter, Das and Das have presented the advantages of biodegradable polymeric nanoparticles in biomedical use, and have also provided an overview of general methods of fabricating and designing nanoparticles. In this chapter, we will continue to talk about nanoparticles as carriers of therapeutics, but will narrow down the focus of the discussions to the context of neurological aging. In fact, neurological disorders such as Parkinson’s disease, Alzheimer’s diseases, neuropathic pain, and cerebrovascular accidents affect approximately 1.5 billion people globally. Over the years, an array of bioactive molecules have been found to be effective for the treatment of neurological conditions but not to be clinically effective due to the presence of the blood–brain barrier (BBB). The BBB is primarily responsible for the separation of extracellular fluid and blood within the CNS, generating a selectively permeable barrier restricting the passage of an array of substances, such as drugs, biomolecules, and potentially pathogenic substances. Nanomedicine is an attractive non-invasive technology that can be employed to circumvent this barrier. In this chapter, we will review the current advancements and limitations for the employment of nanomedicine to treat neurological diseases, and will also delineate the clinical and regulatory requirement for market entry of these products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou EM, Kandil SM, El Miniawy HM (2017) Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int J Pharm 529(1–2):667–677

    Article  CAS  PubMed  Google Scholar 

  • Agrawal P, Singh RP, Sharma G, Mehata AK, Singh S, Rajesh CV, Pandey BL, Koch B, Muthu MS (2017) Bioadhesive micelles of d-α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf, B 152:277–288

    Article  CAS  Google Scholar 

  • Ai H, Wang F, Xia Y, Chen X, Lei C (2012) Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly Musca domestica L.. Food Chem 132(1):493–498

    Article  CAS  PubMed  Google Scholar 

  • Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D (2014) Nanotechnologies for the study of the central nervous system. Prog Neurobiol 123:18–36

    Article  CAS  PubMed  Google Scholar 

  • Albert SM (2007) Projecting neurologic disease burden: difficult but critical. Neurology 68(5):322–323

    Article  PubMed  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison SD (2008) Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic) acid microparticle drug delivery systems. J Pharm Sci 97(6):2022–2035

    Article  CAS  PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S (2017) Impact of particle elasticity on particle-based drug delivery systems. Adv Drug Deliv Rev 108:51–67

    Article  CAS  PubMed  Google Scholar 

  • Aspden TJ, Illum L, Skaugrud Ø (1996) Chitosan as a nasal delivery system: evaluation of insulin absorption enhancement and effect on nasal membrane integrity using rat models. Eur J Pharm Sci 4(1):23–31

    Article  CAS  Google Scholar 

  • Barenholz YC (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134

    Article  CAS  PubMed  Google Scholar 

  • Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, Shukla PK (2012) Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm 432(1–2):105–112

    Article  CAS  PubMed  Google Scholar 

  • Biliuta G, Coseri S (2019) Cellulose: A ubiquitous platform for ecofriendly metal nanoparticles preparation. Coord Chem Rev 383:155–173

    Article  CAS  Google Scholar 

  • Boche M, Pokharkar V (2017) Quetiapine nanoemulsion for intranasal drug delivery: evaluation of brain-targeting efficiency. AAPS PharmSciTech 18(3):686–696

    Article  CAS  PubMed  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  CAS  PubMed  Google Scholar 

  • Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC Jr, Tager I (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American heart association. Circulation 109(21):2655–2671

    Article  PubMed  Google Scholar 

  • Carradori D, Gaudin A, Brambilla D, Andrieux K (2016) Application of nanomedicine to the CNS diseases. Int Rev Neurobiol 130:73–113

    Article  CAS  PubMed  Google Scholar 

  • Charoensit P, Pompimon W, Khorana N, Sungthongjeen S (2019) Effect of amide linkage of PEG-lipid conjugates on the stability and cytotoxic activity of goniodiol loaded in PEGylated liposomes. J Drug Deliv Sci Technol 50:1–8

    Article  CAS  Google Scholar 

  • Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci 104(20):8218–8222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoper GP, Raghavan CV, Siddharth K, Kumar MS, Prasad RH (2014) Formulation and optimization of coated PLGA–Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm J 22(2):133–140

    Article  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468(7323):562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Carnicer-Lombarte A, Fawcett JW, Bora U (2016) Bio-inspired nano tools for neuroscience. Prog Neurobiol 142:1–22

    Article  CAS  PubMed  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133

    Article  Google Scholar 

  • De Luca MA, Lai F, Corrias F, Caboni P, Bimpisidis Z, Maccioni E, Fadda AM, Di Chiara G (2015) Lactoferrin-and antitransferrin-modified liposomes for brain targeting of the NK3 receptor agonist senktide: preparation and in vivo evaluation. Int J Pharm 479(1):129–137

    Article  PubMed  CAS  Google Scholar 

  • Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14(2):282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D, Zhu Q (2018) Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng, C 92:1041–1060

    Article  CAS  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Bræk G (2005) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6(2):1031–1040

    Article  CAS  PubMed  Google Scholar 

  • Đorđević SM, Santrač A, Cekić ND, Marković BD, Divović B, Ilić TM, Savić MM, Savić SD (2017) Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: physicochemical and in vivo performances. Int J Pharm 533(2):421–430

    Article  PubMed  CAS  Google Scholar 

  • Du X, Yin S, Xu L, Ma J, Yu H, Wang G, Li J (2019) Polylysine and cysteine functionalized chitosan nanoparticle as an efficient platform for oral delivery of paclitaxel. Carbohydr Polym 115484

    Google Scholar 

  • Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57(15):2215–2237

    Article  CAS  PubMed  Google Scholar 

  • Duncan R, Gaspar R (2011) Nanomedicine (s) under the microscope. Mol Pharm 8(6):2101–2141

    Article  CAS  PubMed  Google Scholar 

  • Elhissi A, Ahmed W, Dhanak V, Subramani K (2012) Carbon nanotubes in cancer therapy and drug delivery. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry. William Andrew Publishing, US, pp 347–363

    Google Scholar 

  • Fornaguera C, Dols-Perez A, Caldero G, Garcia-Celma MJ, Camarasa J, Solans C (2015) PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release 211:134–143

    Article  CAS  PubMed  Google Scholar 

  • Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F (2018) Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 30(46):1801362

    Article  CAS  Google Scholar 

  • García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86(4):1425–1438

    Article  CAS  Google Scholar 

  • Gaspar R (2010) Therapeutic products: regulating drugs and medical devices. Edward Elgar Publishing, UK

    Google Scholar 

  • Gaspar RS, Florindo HF, Silva LC, Videira MA, Corvo ML, Martins BF, Silva-Lima B (2014) Regulatory aspects of oncologicals: nanosystems main challenges. In: Alonso MJ, Garcia-Fuentes M (eds) Nano-oncologicals. Springer, US, pp 425–452

    Google Scholar 

  • Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM, Liu X, Ferrari M, Decuzzi P (2008) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41(10):2312–2318

    Article  CAS  PubMed  Google Scholar 

  • Gruškienė R, Deveikytė R, Makuška R (2013) Quaternization of chitosan and partial destruction of the quaternized derivatives making them suitable for electrospinning. Chemija 24(4):325–334

    Google Scholar 

  • Guo Q, You H, Yang X, Lin B, Zhu Z, Lu Z, Li X, Zhao Y, Mao L, Shen S, Cheng H (2017) Functional single-walled carbon nanotubes ‘CAR’for targeting dopamine delivery into the brain of parkinsonian mice. Nanoscale 9(30):10832–10845

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12(11):2826–2841

    Article  CAS  PubMed  Google Scholar 

  • Harris JM (1992) Introduction to biotechnical and biomedical applications of poly (ethylene glycol). In: Harris JM (ed) Poly (ethylene glycol) chemistry. Springer, Boston, pp 1–14

    Google Scholar 

  • He P, Davis SS, Illum L (1998) In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm 166(1):75–88

    Article  CAS  Google Scholar 

  • Holban AM, Grumezescu AM, Andronescu E (2016) Inorganic nanoarchitectonics designed for drug delivery and anti-infective surfaces. In: Grumezescu AM (ed) Surface chemistry of nanobiomaterials. William Andrew Publishing, US, pp 301–327

    Google Scholar 

  • Hwang SR, Kim K (2014) Nano-enabled delivery systems across the blood–brain barrier. Arch Pharmacal Res 37(1):24–30

    Article  CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Disc Today 11(17–18):812–818

    Article  CAS  Google Scholar 

  • Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, Bhatnagar A, Ali J (2015) Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 41(10):1674–1681

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, Webster TJ, Soni V (2015) Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater 24:140–151

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Singh-Moon RP, Ellis JA, Chaudhuri DB, Wang M, Reif R, Bruce JN, Bigio IJ, Straubinger RM (2014a) Cerebral hypoperfusion-assisted intra-arterial deposition of liposomes in normal and glioma-bearing rats. Neurosurgery 76(1):92–100

    Google Scholar 

  • Joshi S, Singh-Moon R, Wang M, Chaudhuri DB, Ellis JA, Bruce JN, Bigio IJ, Straubinger RM (2014b) Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection. J Neurooncol 120(3):489–497

    Google Scholar 

  • Kabanov AV, Vinogradov SV (2009) Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 48(30):5418–5429

    Article  CAS  Google Scholar 

  • Kanazawa T, Kaneko M, Niide T, Akiyama F, Kakizaki S, Ibaraki H, Shiraishi S, Takashima Y, Suzuki T, Seta Y (2017) Enhancement of nose-to-brain delivery of hydrophilic macromolecules with stearate-or polyethylene glycol-modified arginine-rich peptide. Int J Pharm 530(1–2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Katare YK, Daya RP, Sookram Gray C, Luckham RE, Bhandari J, Chauhan AS, Mishra RK (2015) Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol Pharm 12(9):3380–3388

    Article  CAS  PubMed  Google Scholar 

  • Kauscher U, Holme MN, Björnmalm M, Stevens MM (2019) Physical stimuli-responsive vesicles in drug delivery: beyond liposomes and polymersomes. Adv Drug Deliv Rev 138:259–275

    Article  CAS  PubMed  Google Scholar 

  • Kaushik A, Jayant RD, Sagar V, Nair M (2014) The potential of magneto-electric nanocarriers for drug delivery. Exp Opin Drug Deliv 11(10):1635–1646

    Article  CAS  Google Scholar 

  • Kaushik A, Jayant RD, Nair M (2016) Advancements in nano-enabled therapeutics for neuroHIV management. Int J Nanomed 11:4317

    Article  CAS  Google Scholar 

  • Kendra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp Mycol 8(3):276–281

    Article  CAS  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Sharma P, Maheshwari R, Tekade M, Shrivastava SK, Tekade RK (2018) Beyond the blood–brain barrier: facing new challenges and prospects of nanotechnology-mediated targeted delivery to the brain. In: Kesharwani P, Gupta U (eds) Nanotechnology-based targeted drug delivery systems for brain tumors. Academic Press, US, pp 397–437

    Google Scholar 

  • Lee SY, Ferrari M, Decuzzi P (2009) Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20(49):495101

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Liu CG, Huang ZH, Xue FF (2011) Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agric Food Chem 59(5):1962–1967

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26(3):631–643

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Therap Deliv 3(2):181–194

    Article  CAS  Google Scholar 

  • Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, Zhang Q, Gao H, Zhang Z, He Q (2014) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35(17):4835–4847

    Article  CAS  PubMed  Google Scholar 

  • Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E (2017) Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 113:177–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011a) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85(1):228–236

    Google Scholar 

  • Martínez-Sanz M, Olsson RT, Lopez-Rubio A, Lagaron JM (2011b) Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers. Part I: Characterization and method optimization. Cellulose 18(2):335–347

    Google Scholar 

  • Merkel TJ, Jones SW, Herlihy KP, Kersey FR, Shields AR, Napier M, Luft JC, Wu H, Zamboni WC, Wang AZ, Bear JE (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci 108(2):586–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir M, Ahmed N, ur Rehman A (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B: Biointerf 159:217–231

    Google Scholar 

  • Molineux G (2002) Pegylation: engineering improved pharmaceuticals for enhanced therapy. Cancer Treat Rev 28:13–16

    Article  CAS  PubMed  Google Scholar 

  • Muthu MS (2014) Nanoparticles based on PLGA and its co-polymer: an overview. Asian J Pharm 3(4):266–273

    Article  Google Scholar 

  • Muthu MS, Leong DT, Mei L, Feng SS (2014) Nanotheranostics˗application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4(6):660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal K, Singh SK, Mishra DN (2013) Optimization of brain targeted chitosan nanoparticles of Rivastigmine for improved efficacy and safety. Int J Biol Macromol 59:72–83

    Article  CAS  PubMed  Google Scholar 

  • Nair M, Jayant RD, Kaushik A, Sagar V (2016) Getting into the brain: potential of nanotechnology in the management of NeuroAIDS. Adv Drug Deliv Rev 103:202–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, Wilhelm S (2020) Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. In: Chung EJ, Leon L, Rinaldi C (eds) Nanoparticles for biomedical applications. Elsevier, The Netherlands, pp 37–53

    Google Scholar 

  • Niaz T, Nasir H, Shabbir S, Rehman A, Imran M (2016) Polyionic hybrid nano-engineered systems comprising alginate and chitosan for antihypertensive therapeutics. Int J Biol Macromol 91:180–187

    Article  CAS  PubMed  Google Scholar 

  • Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta (BBA)-Biomembr 557(1):9–23

    Google Scholar 

  • Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  PubMed  Google Scholar 

  • Patel HK, Gajbhiye V, Kesharwani P, Jain NK (2016) Ligand anchored poly (propyleneimine) dendrimers for brain targeting: comparative in vitro and in vivo assessment. J Colloid Interface Sci 482:142–150

    Article  CAS  PubMed  Google Scholar 

  • Pautler M, Brenner S (2010) Nanomedicine: promises and challenges for the future of public health. Int J Nanomed 5:803

    Google Scholar 

  • Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A (2015) BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 33(2):277–287

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Keys KB, Torres-Lugo M, Lowman AM (1999) Poly (ethylene glycol)-containing hydrogels in drug delivery. J Control Release 62(1–2):81–87

    Article  CAS  PubMed  Google Scholar 

  • Qazanfarzadeh Z, Kadivar M (2016) Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int J Biol Macromol 91:1134–1140

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rashed HM, Shamma RN, Basalious EB (2017) Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: in vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery. Drug Deliv 24(1):181–187

    Article  CAS  PubMed Central  Google Scholar 

  • Reynolds JL, Mahato RI (2017) Nanomedicines for the treatment of CNS diseases. J Neuroimmune Pharmacol 12(1):1–5

    Article  PubMed  Google Scholar 

  • Rondeau E, Cooper-White JJ (2008) Biopolymer microparticle and nanoparticle formation within a microfluidic device. Langmuir 24(13):6937–6945

    Article  CAS  PubMed  Google Scholar 

  • Rudzinski WE, Aminabhavi TM (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399(1–2):1–1

    Article  CAS  PubMed  Google Scholar 

  • Sainz V, Conniot J, Matos AI, Peres C, Zupanǒiǒ E, Moura L, Silva LC, Florindo HF, Gaspar RS (2015) Regulatory aspects on nanomedicines. Biochem Biophys Res Commun 468(3):504–510

    Article  CAS  PubMed  Google Scholar 

  • Sanvicens N, Marco MP (2008) Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433

    Article  CAS  PubMed  Google Scholar 

  • Shah S (2016) The nanomaterial toolkit for neuroengineering. Nano Conv 3(1):25

    Article  CAS  Google Scholar 

  • Sharma D, Sharma N, Pathak M, Agrawala PK, Basu M, Ojha H (2018) Nanotechnology-based drug delivery systems: challenges and opportunities. In: Grumezescu AM (ed) Drug targeting and stimuli sensitive drug delivery systems. William Andrew Publishing, US, pp 39–79

    Google Scholar 

  • Shen Z, Ye H, Kröger M, Li Y (2017) Self-assembled core–polyethylene glycol–lipid shell nanoparticles demonstrate high stability in shear flow. Phys Chem Chem Phys 19(20):13294–13306

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Fisher A, Liu WK, Li Y (2018) PEGylated “stealth” nanoparticles and liposomes. In: Parambath A (ed) Engineering of biomaterials for drug delivery systems. Woodhead Publishing, US, pp 1–26

    Google Scholar 

  • Shen ZQ, Loe DT, Awino JK, Kroger M, Rouge JL, Li Y (2016) Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale 8(31):14821–14835

    Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  • Soni N, Tekade M, Kesharwani P, Bhattacharya P, Maheshwari R, Dua K, M Hansbro P, Kumar Tekade R (2017) Recent advances in oncological submissions of dendrimer. Curr Pharm Des 23(21):3084–3098

    Google Scholar 

  • Soni V, Pandey V, Asati S, Jain P, Tekade RK (2019) Design and fabrication of brain-targeted drug delivery. In: Tekade RK (ed) Basic fundamentals of drug delivery. Academic Press, US, pp 539–593

    Google Scholar 

  • Swami R, Singh I, Kulhari H, Jeengar MK, Khan W, Sistla R (2015) p-Hydroxy benzoic acid-conjugated dendrimer nanotherapeutics as potential carriers for targeted drug delivery to brain: an in vitro and in vivo evaluation. J Nanopart Res 17(6):265

    Article  CAS  Google Scholar 

  • Tan SF, Kirby BP, Stanslas J, Basri HB (2017) Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability. J Pharm Pharmacol 69(11):1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Huang Z, Zhang H, Wang Y, Hu Q, Jiang H (2014) Design and formulation of trimethylated chitosan-graft-poly (ɛ-caprolactone) nanoparticles used for gene delivery. Carbohydr Polym 101:104–112

    Article  CAS  PubMed  Google Scholar 

  • Tavares AJ, Poon W, Zhang YN, Dai Q, Besla R, Ding D, Ouyang B, Li A, Chen J, Zheng G, Robbins C (2017) Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc Natl Acad Sci 114(51):E10871–E10880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB (2017) Nanotechnology for the development of nanomedicine. In: Mishra V, Kesharwani P, Amin MCIM, Iyer A (eds) Nanotechnology-based approaches for targeting and delivery of drugs and genes. Academic Press, US, pp 3–61

    Google Scholar 

  • Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz Y, Tamarkin L, Desai N (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci 1313(1):35–56

    Article  CAS  PubMed  Google Scholar 

  • Tong GF, Qin N, Sun LW (2017) Development and evaluation of Desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm J 25(6):844–851

    Article  PubMed  Google Scholar 

  • Vashist A, Kaushik A, Ghosal A, Nikkhah-Moshaie R, Vashist A, Jayant RD, Nair M (2017) Journey of hydrogels to nanogels: a decade after. In: Vashist A, Kaushik AK, Ahmad S, Nair M (eds) Nanogels for biomedical applications. Royal Society of Chemistry, UK, pp 1–8

    Google Scholar 

  • Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, Nair M (2018) Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Disc Today 23(7):1436–1443

    Article  CAS  Google Scholar 

  • Vieira DB, Gamarra LF (2016) Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int J Nanomed 11:5381

    Article  CAS  Google Scholar 

  • Vinogradov SV (2010) Nanogels in the race for drug delivery. Nanomedicine 5(2):165–168

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov SV, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15(1):50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivek R, Thangam R, Nipunbabu V, Ponraj T, Kannan S (2014) Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a “smart” drug delivery system to breast cancer cell therapy. Int J Biol Macromol 65:289–297

    Article  CAS  PubMed  Google Scholar 

  • Vogtle F, Richardt G, Werner N (2009) Dendrimer chemistry. Strauss GmbH, Morlenbach

    Book  Google Scholar 

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Jamal S, Detamore MS, Berkland C (2011) PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells. J Biomed Mater Res, Part A 96(3):520–527

    Article  CAS  Google Scholar 

  • Wang J, Wang M, Zheng M, Guo Q, Wang Y, Wang H, Xie X, Huang F, Gong R (2015) Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery. Colloids Surf, B 129:63–70

    Article  CAS  Google Scholar 

  • Xie J, Shen Z, Anraku Y, Kataoka K, Chen X (2019) Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 224:119491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Chen X, Feng M, Shi Z, Zhang W, Wang Y, Ke C, Lin Q (2019) Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloids Surf, B 177:112–120

    Article  CAS  Google Scholar 

  • Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39

    Article  CAS  Google Scholar 

  • Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WC (2016) Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348

    Article  CAS  PubMed  Google Scholar 

  • Zhang E, Xing R, Liu S, Qin Y, Li K, Li P (2019) Advances in chitosan-based nanoparticles for oncotherapy. Carbohydr Polym 115004

    Google Scholar 

  • Zhao M, Hu J, Zhang L, Zhang L, Sun Y, Ma N, Chen X, Gao Z (2014) Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm 475(1–2):9–16

    Article  CAS  PubMed  Google Scholar 

  • Zhu J (2010) Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay .

Editor information

Editors and Affiliations

Glossary

Bioconjugation

Adsorption or covalent attachment of a biomacromolecule on the outer surface of another chemical entity.

Biodegradability

He capacity of a material to undergo degradation in a biological environment.

Glass transition temperature

The temperature at which a polymer undergoes transition from a rubbery state to a glassy state.

Graphene

A two-dimensional carbon material possessing a honeycomb lattice and Dirac-like low-energy excitations.

Ionotropic gelation

A gelation process mediated by the crosslinking of polyelectrolyte molecules in the presence of multivalent counter ions.

Mucoadhesiveness

The ability of a material to adhere to mucosal tissues upon administration to a biological body.

Protein corona

A dynamic protein layer on the surface of a nanocarrier. Its composition changes continuously due to ongoing protein desorption and absorption.

Quantum dots

Fluorescent semiconductor nanocrystals that find use in imaging applications.

Reticuloendothelial system

A major component of the host defense system contributing to the clearance of particulate materials and bacteria from the bloodstream.

Risperidone

A benzisoxazole derivative that has been exploited as an anti-psychotic agent.

Surface functionalization

Modification of surface properties for specific purposes.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramiah, P., Kondiah, P.P.D., Choonara, Y.E., Toit, L.C.d., Pillay, V. (2020). Use of Nanoparticulate Systems for Tackling Neurological Aging. In: Lai, WF. (eds) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-54490-4_7

Download citation

Publish with us

Policies and ethics