Skip to main content

Development of Biodegradable Polymeric Nanoparticles for Systemic Delivery

  • Chapter
  • First Online:
Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 13))

  • 432 Accesses

Abstract

In the previous chapter, the possible use of prodrug design in the enhancement of systemic delivery has been discussed. As the technique applicable to one drug may not be generalized to another drug, such an approach is comparatively labor intensive, and requires the structure of the agent designed to be manipulated case by case. As an alternative to, or as a complementary strategy for prodrug design, extensive efforts have been devoted to the development of diverse types of carriers over the last several decades. These carriers on one hand enable the delivery of multiple chemical entities and on the other hand allow for functionalization to enhance versatility and working performance. Due to their high structural flexibility, polymers have emerged as one of the most extensively studied materials for fabrication of such carriers. In this chapter, we will discuss different approaches to prepare polymeric particulates and will highlight the parameters to be characterized for optimal delivery performance in systemic delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alex R, Bodmeier R (1990) Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J Microencapsul 7:347–355

    Article  CAS  PubMed  Google Scholar 

  • Alonso MJ, Cohen S, Park TG, Gupta RK, Siber GR, Langer R (1993) Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm Res 10:945–953

    Article  CAS  PubMed  Google Scholar 

  • Artursson P, Arro E, Edman P, Erricson JL, Sjoholm I (1987) Biodegradable microspheres V: stimulation of macrophages with microparticles made of various polysaccharides. J Pharm Sci 78:127–133

    Article  Google Scholar 

  • Aso Y, Yoshioka S, Po ALW, Terao T (1994) Effect of temperature on mechanisms of drug release and matrix degradation of poly(D, L-lactide) microspheres. J Control Release 31:33–39

    Article  CAS  Google Scholar 

  • Batcheller S, Miller KJ, Das SK (2020) Effect of molar ratios of poly(lactide-co-glycolide) microparticles loaded with antisense deoxy-oligonucleotide on the inhibition of reuptake of 5-HT in cell culture medium. Submitted

    Google Scholar 

  • Battistella C, Klok HA (2017) Controlling and monitoring intracellular delivery of anticancer polymer nanomedicines. Macromol Biosci 17:1700022

    Article  CAS  Google Scholar 

  • Beck LR, Pope VZ, Flowers CE Jr, Cowsar DR, Tice TR, Lewis DH et al (1983) Poly(DL-lactide-co-glycolide)/norethisterone microcapsules: an injectable biodegradable contraceptive. Biol Reprod 28:186–195

    Article  CAS  PubMed  Google Scholar 

  • Bhagat HR, Hollenbeck RG, Pande PG, Bogdansky S, Fait CD, Rock M (1994) Preparation and evaluation of methotrexate-loaded biodegradable polyanhydride microspheres. Drug Dev Ind Pharm 20:1725–1737

    Article  CAS  Google Scholar 

  • Bleich J, Muller BW, Wassmus W (1993) Aerosol solvent extraction system, a new microparticle production technique. Int J Pharm 97:111–117

    Article  CAS  Google Scholar 

  • Blunk T, Hochstrasser DF, Sanchez JC, Muller BW, Muller RH (1993) Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14:1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Bodmeier R, Chen H (1988) Preparation of biodegradable poly(+,-) lactide microparticles using a spray-drying technique. J Pharm Pharmacol 40:754–757

    Article  CAS  PubMed  Google Scholar 

  • Bodmeier R, Chen H (1989) Preparation and characterization of microspheres containing the anti-inflammatory agents indomethacin, ibuprofen and ketoprofen. J Control Release 10:167–175

    Article  CAS  Google Scholar 

  • Bodmeier R, McGinity JW (1987) Polylactic acid microspheres containing quinidine base and quinidine sulfate prepared by the solvent evaporation technique. I. Methods and morphology. J Microencap 4:279–288

    Article  CAS  Google Scholar 

  • Boswell GA, Scribner RM (1973) Inventors. Polylactide drug mixtures. US Patent

    Google Scholar 

  • Braun AG, Buckner CA, Emerson DJ, Nichinson BB (1982) Quantitative correspondence between the in vivo and in vitro activity of teratogenic agents. Proc Natl Acad Sci USA 79:2056–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger JJ, Tomlinson ET, Mulder EMA, McVie JG (1985) Albumin microspheres for intra-arterial tumor targeting I pharmaceutical aspects. Int J Pharm 23:333–344

    Article  CAS  Google Scholar 

  • Calzoni E, Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C (2019) Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J Funct Biomater 10:4

    Article  CAS  PubMed Central  Google Scholar 

  • Carstensen H, Muller BW, Muller RH (1991) Adsorption of ethoxylated surfactants on nanoiparticles I Characterization by hydrophobic interaction chromatography. Int J Pharm 67:29–37

    Article  CAS  Google Scholar 

  • Chainey M, Wilkinson MC, Hearn J (1982) Preparation of overcoated polymer lattices by a “shot-growth” technique. Ind Eng Chem Prod Dev 21:171–176

    Article  CAS  Google Scholar 

  • Chattaraj SC, Rathinavelu A, Das SK (1999) Biodegradable microparticles of influenza viral vaccine: comparison of the effects of routes of administration on the in vivo immune response in mice. J Control Release 58:223–232

    Article  CAS  PubMed  Google Scholar 

  • Cherng JY, van de Wetering P, Talsma H, Crommelin DJ, Hennink WE (1996) Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles. Pharm Res 13:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Chickering DE III, Jacob JS, Desi TA, Harrison M, Harris WP, Morrell CN et al (1997) Bioadhesive microspheres: III. An in vitro transit and bioavailability study of drug loaded alginate and poly(fumeric-co-sebacic anhydride) microspheres. J Control Release 48:35–46

    Article  CAS  Google Scholar 

  • Chu CC (1985) Degradation phenomena of two linear aliphatic polyester fibers used in medicine and surgery. Polymer 26:591–594

    Article  CAS  Google Scholar 

  • Cleland Jeffrey L, Duenas E, Daugherty A, Marian M, Yang J, Wilson M et al (1997a) Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J Control Release 49:193–205

    Article  CAS  Google Scholar 

  • Cleland JL, Mac A, Boyd B, Yang J, Duenas ET, Yeung D et al (1997b) The stability of recombinant human growth hormone in poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharma Res 14:420–425

    Article  CAS  Google Scholar 

  • Conti B, Pavanetto F, Genta I (1992) Use of polylactic acid for the preparation of microparticulate drug delivery systems. J Microencapsul 9:153–166

    Article  CAS  PubMed  Google Scholar 

  • Conti B, Genta I, Modena T, Pavanetto F (1995) Investigation on process parameters involved in polylactide-co-glycolide microsphere preparation. Drug Dev Ind Pharm 221:615–622

    Article  Google Scholar 

  • Coombes AG, Yeh MK, Lavelle EC, Davis SS (1998) The control of protein release from poly(DL-lactide co-glycolide) microparticles by variation of the external aqueous phase surfactant in the water-in oil-in water method. J Control Release 52:311–320

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Tucker IG, Hill DJ, Ganguly N (1995) Evaluation of poly(isobutylcyanoacrylate) nanoparticles for mucoadhesive ocular drug delivery. I. Effect of formulation variables on physicochemical characteristics of nanoparticles. Pharm Res 12:534–540

    Article  CAS  PubMed  Google Scholar 

  • Davis SS, Douglas S, Illum L, Jones PDE, Mak E, Muller RH (1986) Targeting of colloidal carriers and the role of surface properties. In: Gregoriadis G, Senior J, Poste G (eds) Targeting of drugs with synthetic systems. Plenum Press, New York, pp 123–146

    Google Scholar 

  • De Jaeghere F, Allemann E, Feijen J, Kissel T, Doelker E, Gurny R (2000) Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA: PEO diblock and triblock copolymers. J Drug Target 8:143–153

    Article  PubMed  Google Scholar 

  • Deasy PB (1984) Microencapsulation and related drug processes. Marcel Dekker, New York

    Google Scholar 

  • Deyme M, Spenlehauer G, Benoit JP (1992) Percolation and release of cisplatin-loaded in poly(lactide-co-glycolide) microspheres for chemoembolization. J Bioact Compat Pol 7:150–160

    Article  Google Scholar 

  • Domb A, Langer R (1987) Poly(anhydrides) I. Preparation of high molecular weight polyanhydrides. J Polym Sci Pol Chem 25:3373–3386

    Article  CAS  Google Scholar 

  • Domb A, Maniar M (1993) Absorbable biopolymers derived from dimer fatty acids. J Polym Sci Pol Chem 31:1275–1285

    Article  CAS  Google Scholar 

  • Eldridge JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM (1991) Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid that enhances the level of toxin neutralizing antibodies. Infect Immun 59:2978–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias HG (1997) An introduction to polymer science. VCH Publishers Inc., New York

    Google Scholar 

  • Eyles JE, Alpar HO, Conway BR, Keswick M (1997) Oral delivery and fate of poly(lactic acid) microsphere-encapsulated interferon in rats. J Pharm Pharmacol 49:669–674

    Article  CAS  PubMed  Google Scholar 

  • Ferdous AJ, Stembridge NY, Singh M (1998) Role of monensin PLGA polymer nanoparticles and liposomes as potentiator of ricin A immunotoxins in vitro. J Control Release 50:71–78

    Article  CAS  PubMed  Google Scholar 

  • Ferrari R, Sponchioni M, Morbidelli M, Moscatelli D (2018) Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale 10:22701–22719

    Article  CAS  PubMed  Google Scholar 

  • Finsy R (1994) Particle sizing by quasi-elastic light scattering. Adv Colloid Interface Sci 52:79–143

    Article  CAS  Google Scholar 

  • Fischer W, Muller BW (1991) Inventors. Method and apparatus for the manufacture of a product having a substance embedded in a carrier. US Patent

    Google Scholar 

  • Fong JW (1979) Inventor. Processes for preparation of microspheres. US Patent

    Google Scholar 

  • Fong JW (1988) Microencapsulation by solvent evaporation and organic phase separation processes. In: Hsieh DST (ed) Controlled release systems. CRC Press, Boca Raton, Florida, pp 81–108

    Google Scholar 

  • Gander B, Wehrli E, Alder R, Merkle HP (1995) Quality improvement of spray-dried, protein-loaded D, L-PLA microspheres by appropriate polymer solvent selection. J Microencapsul 12:83–97

    Article  CAS  PubMed  Google Scholar 

  • Gasper MM, Blanco D, Cruz ME, Alonso MJ (1998) Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles: influence of polymer properties on enzyme loading, activity and in vitro release. J Control Release 52:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi R, Carlfors J (1997) Biological activity of lysozyme after entrapment in poly(d, l-lactide-co-glycolide)-microspheres. Pharma Res 14:1556–1562

    Article  CAS  Google Scholar 

  • Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery: poly(glycolic)/poly(lactic acid) homo- and copolymers: 1. Polymer 20:1459–1464

    Article  CAS  Google Scholar 

  • Goodwin JW, Hearn J, Ho CC, Ottewill RH (1974) Studies on the preparation and characterization of monodisperse polystyrene lattices. III Preparation without added surface-active agents. Colloid Polym Sci 252:464–471

    Article  CAS  Google Scholar 

  • Gopferich A (1996) Polymer degradation and erosion: mechanisms and applications. Eur J Pharm Biopharm 42:1–11

    Google Scholar 

  • Gopferich A, Langer R (1993) The influene of microstructure and monomer properties on the erosion mechanism of a class of polyanhydrides. J Polym Sci 31:2445–2458

    Article  CAS  Google Scholar 

  • Gopferich A, Schedl L, Langer R (1996) The precipitation of monomers during the erosion of a class of polyanhydrides. Polymer 37:3861–3869

    Article  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, DeLuca PP (1989) Sustained release progesterone microspheres. Proc Int Symp Cont Rel Bioact Mater 16:81–82

    Google Scholar 

  • Gupta RK, Chang AC, Griffin P, Rivera R, Guo YY, Siber GR (1997) Determination of protein loading in biodegradable polymer microspheres containing tetanus toxoid. Vaccine 15:672–678

    Article  CAS  PubMed  Google Scholar 

  • Hazrati AM, Lewis DH, Atkins TJ, Stohrer RC, McPhilipps CA, Little JE (1993) Salmonella enteritidis vaccine utilizing biodegradable microspheres. Proc Int Symp Control Rel Bioact Mater 20:101–102

    Google Scholar 

  • Herrmann J, Bodmeier R (1995) Somatostatin containing biodegradable microspheres prepared by a modified solvent evaporation method based on W/O/W double emulsion-evaporations. Int J Pharm 126:129–138

    Article  CAS  Google Scholar 

  • Hjerten S, Yao K, Eriksson KO, Johansson B (1986) Gradient and isocratic high performance hydrophobic interaction chraomatography of proteins on agarose columns. J Chromatogr 359:99–109

    Article  CAS  Google Scholar 

  • Hofstee BH (1973) Hydrophobic affinity chromatography of proteins. Anal Biochem 52:430–438

    Article  CAS  PubMed  Google Scholar 

  • Holland SJ, Tighe BJ, Gould PJ (1986) Polymers for biodegradable medical devices, I. The potential of polyesters as controlled macromolecular release systems. J Control Release 4:155–180

    Article  CAS  Google Scholar 

  • Hora MS, Rana RK, Nunberg JH, Tice TR, Gilley RM, Hudson ME (1990) Release of human serum albumin from poly(lactide-co-glycolide) microspheres. Pharma Res 7:1190–1194

    Article  CAS  Google Scholar 

  • Howard MA, Gross A, Grady MS, Langer R, Mathiowitz E, Winn HR et al (1989) Intracerebral drug delivery in rats reverses lesion-induced memory deficits. J Neurosurg 71:105–112

    Article  CAS  PubMed  Google Scholar 

  • Ike O, Shimizu Y, Wada R, Hyon SH, Ikada Y (1992) Controlled cisplatin delivery system using poly(D, L-lactic acid). Biomaterials 13:230–234

    Article  CAS  PubMed  Google Scholar 

  • Illum L, Jacobsen LO, Muller RH, Mak E, Davis SS (1987) Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials 8:113–117

    Article  CAS  PubMed  Google Scholar 

  • Iwata M, McGinity JW (1992) Preparation of multi-phase microspheres of poly(D, L-lactic acid) and poly(D, L-lactic-co-glycolic acid) containing a W/O emulsion by a multiple emulsion solvent evaporation technique. J Microencapsul 9:201–214

    Article  CAS  PubMed  Google Scholar 

  • Izumikawa S, Yoshioka S, Aso Y, Takeda Y (1991) Preparation of poly(l-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. J Control Release 15:133–140

    Article  CAS  Google Scholar 

  • Jalil R, Nixon JR (1989) Microencapsulation using poly(l-lactic acid) I: microcapsule properties affected by the preparative techniques. J Microencap 6:473–484

    Article  CAS  Google Scholar 

  • Jalil R, Nixon JR (1990a) Microencapsulation using poly(DL-lactic acid) III: Effect of polymer molecular weight on the release kinetics. J Microencap 7:357–374

    Article  CAS  Google Scholar 

  • Jalil R, Nixon JR (1990b) Microencapsulation using poly(D, L-lactic acid) II: effect of polymer molecular weight on the microcapsule properties. J Microencap 7:245–254

    Article  CAS  Google Scholar 

  • Jalil R, Nixon JR (1990c) Microencapsulation using poly (L-lactic acid) II: Preparative variables affecting microcapsule properties. J Microencapsul 7:25–39

    Article  CAS  PubMed  Google Scholar 

  • James AM (1979) Electrophoresis of particles in suspension. In: Good RJ, Stromberg RR (eds) Surface and Colloid Science. Plenum Press, New York

    Google Scholar 

  • Jeffery H, Davis SS, O’Hagan DT (1993) The preparation and characterization of poly(lactide-co-glycolide) microparticles II The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm Res 10:362–368

    Article  CAS  PubMed  Google Scholar 

  • Jennissen HP (1978) Multivalent interaction chromatography as exemplified by the adsorption or desorption of skletal muscle enzymes on hydrophobic alkyl-ligands. J Chromatogr 159:71–83

    Article  CAS  PubMed  Google Scholar 

  • Johnson RE, Lanaski LA, Gupta V, Griffin MJ, Gaud HT, Needham TE et al (1991) Stability of atriopeptin III in poly(D, L-lactide-co-glycolide) microspheres. J Control Release 17:61–68

    Article  CAS  Google Scholar 

  • Kent JS, Sanders LM, Lewis DH, Tice TR (1980) Inventors. Microencapsulation of water soluble polypeptides. US Patent

    Google Scholar 

  • Kent JS, Sanders LM, Lewis DH, Tice TR (1987) Inventors. Microencapsulation of water soluble active polypeptides. US Patent

    Google Scholar 

  • Kofler N, Ruedl C, Klima J, Recheis H, Bock G, Wick G et al (1996) Preparation and characterization of poly-(D, L-lactide-co-glycolide) and poly-(L-lactic acid) microspheres with entrapped pneumotropic bacterial antigens. J Immunol Methods 192:25–35

    Article  CAS  PubMed  Google Scholar 

  • Kondo A (1979) Microcapsule processing and technology. Marcel Dekker, New York

    Google Scholar 

  • Lai WF (2011a) Nucleic acid therapy for lifespan prolongation: present and future. J Biosci 36:725–729

    Article  CAS  PubMed  Google Scholar 

  • Lai WF (2011b) In vivo nucleic acid delivery with PEI and its derivatives: current status and perspectives. Expert Rev Med Devices 8:173–185

    Article  CAS  PubMed  Google Scholar 

  • Lai WF (2012) Protein kinases as targets for interventive biogerontology: overview and perspectives. Exp Gerontol 47:290–294

    Article  CAS  PubMed  Google Scholar 

  • Lai WF (2013a) Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 12:310–315

    Article  CAS  PubMed  Google Scholar 

  • Lai WF (2013b) Cyclodextrins in non-viral gene delivery. Biomaterials 35:401–411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai WF, He ZD (2016) Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 243:269–282

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Lin MC (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Release 134:158–168

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Lin MC (2015) Treating cutaneous aging with patented technologies. J Biosci 40:209–216

    Article  PubMed  Google Scholar 

  • Lai WF, Rogach AL (2017) Hydrogel-based materials for delivery of herbal medicines. ACS Appl Mater Interfaces 9:11309–11320

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Shum HC (2015a) A stimuli-responsive nanoparticulate system using poly(ethylenimine)-graft-polysorbate for controlled protein release. Nanoscale 8:517–528

    Article  CAS  Google Scholar 

  • Lai WF, Shum HC (2015b) Hypromellose-graft-chitosan and its polyelectrolyte complex as novel systems for sustained drug delivery. ACS Appl Mater Interfaces 7:10501–10510

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Wong WT (2018) Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol 36:713–728

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Susha AS, Rogach AL (2016) Multicompartment microgel beads for co-delivery of multiple drugs at individual release rates. ACS Appl Mater Interfaces 8:871–880

    Article  CAS  PubMed  Google Scholar 

  • Lai WF, Rogach AL, Wong WT (2017) Molecular design of upconversion nanoparticles for gene delivery. Chem Sci 8:7339–7358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai WF, Hu C, Deng G, Lui KH, Wang X, Tsoi TH et al (2019) A biocompatible and easy-to-make polyelectrolyte dressing with tunable drug delivery properties for wound care. Int J Pharm 566:101–110

    Article  CAS  PubMed  Google Scholar 

  • Langer R, Peppas N (1983) Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: a review. J Macromol Sci C 23:61–126

    Article  Google Scholar 

  • Lapka GG, Mason NS, Thies C (1986) Inventors. Process for preparation of microcapsules. US Patent

    Google Scholar 

  • Lasic D, Martin F (1995) Stealth liposomes. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Leelarasamee N, Howard SA, Malanga CJ, Luzzi LA, Hogan TF, Kandzari SJ et al (1986) Kinetics of drug release from polylactic acid-hydrocortisone microcapsules. J Microencapsul 3:171–179

    Article  CAS  PubMed  Google Scholar 

  • Leelarasamee N, Howard SA, Malanga CJ, Ma JK (1988) A method for the preparation of polylactic acid microcapsules of controlled particle size and drug loading. J Microencapsul 5:147–157

    Article  CAS  PubMed  Google Scholar 

  • Leong KW, Brott BC, Langer R (1985) Bioerodible polyanhydrides as drug carrier matrices I. Characterization, degradation and release characteristics. J Biomed Mater Res 19:941–955

    Article  CAS  PubMed  Google Scholar 

  • Leong K, D’Amore P, Langer R (1986) Bioerodible polyanhydrides as drug carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 20:51–64

    Article  CAS  PubMed  Google Scholar 

  • Leong KW, Simonte V, Langer R (1987) Synthesis of polyanhydrides: Melt polycondensation, dehydrochlorination and dehydrative coupling. Macromolecules 20:705–712

    Article  CAS  Google Scholar 

  • Lewis DD (1990) Controlled release of bioactive agents from lactide/glycolide polymers. In: Biodegradable polymers as drug delivery systems. Marcel Dekker, New York

    Google Scholar 

  • Lu W, Park TG (1995) Protein release from poly(lactic-co-glycolic acid) microspheres: Protein stability problems. PDA J Pharm Sci Tech 49:13–19

    CAS  Google Scholar 

  • Lukowski G, Muller RH, Muller BW, Dittgen M (1992) Acrylic acid copolymer nanoparticles for drug delivery: I. Characterization of the surface properties relevant for in vivo organ distribution. Int J Pharm 94:23–31

    Article  Google Scholar 

  • Mandal TK (1996) Development of a novel phase separation technique for the encapsulation of AZT in a biodegradable polymer. Pharm Pharmacol Commun 2:99–102

    CAS  Google Scholar 

  • Mathiowitz E, Langer R (1987) Polyanhydride microspheres as drug carriers I. Hot melt microencapsulation. J Control Release 5:13–22

    Article  CAS  Google Scholar 

  • Mathiowitz E, Bernstein H, Giannos S, Dor Ph, Turek T, Langer R (1988) Poly(anhydride) microspheres as drug carriers II. Microencapsulation by solvent removal. J Appl Polym Sci 35:755–774

    Article  CAS  Google Scholar 

  • Mathiowitz E, Kline D, Langer R (1990) Morphology of poly(anhydride) microsphere delivery systems. Scanning Microsc 4:329–340

    CAS  PubMed  Google Scholar 

  • Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P et al (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature 386:410–414

    Article  CAS  PubMed  Google Scholar 

  • McGee JP, Davis SS, O’Hagan DT (1994) The immunogenicity of a model protein entrapped in poly(lactide-co-glycolide) microparticles prepared by a novel phase separation technique. J Control Release 31:55–60

    Article  CAS  Google Scholar 

  • McGee JP, Singh M, Li XM, Qiu H, O’Hagan DT (1997) The encapsulation of a model protein in poly(D, L-lactide-co-glycolide) microparticles of various sizes: an evaluation of process reproducibility. J Microencap 14:197–210

    Article  CAS  Google Scholar 

  • Mehta RC, Jeyanthi R, Calis S, Thanoo BC, Burton KW, DeLuca PP (1994) Biodegradable microspheres as depot system for parenteral delivery of peptide drugs. J Control Release 29:375–384

    Article  CAS  Google Scholar 

  • Melander W, Horvath C (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    Article  CAS  PubMed  Google Scholar 

  • Mestiri M, Puisieux F, Benoit JP (1993) Preparation and characterization of cisplatin-loaded polymethyl methacrylate microspheres. Int J Pharm 89:229–234

    Article  CAS  Google Scholar 

  • Miller RA, Brady JM, Cutright DE (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11:711–719

    Article  CAS  PubMed  Google Scholar 

  • Montini M, Pedroncelli A, Tengattini F, Pagani M, Gianola D, Cortesi L, et al (1993) Medical applications of intramuscularly administered bromocriptine microspheres. In: Rolland A (ed) Pharmaceutical particulate carriers, therapeutic applications. Marcel Dekker, New York pp 227–274

    Google Scholar 

  • Morlock M, Koll H, Winter G, Kissel T (1997) Microencapsulation of rh-erythropoietin, using biodegradable poly(D, L-lactide-co-glycolide): protein stability and the effects of stabilizing excipients. Eur J Pharm Biopharm 43:29–36

    Article  CAS  Google Scholar 

  • Muller RH (1991) Colloidal carriers for controlled drug delivery and targeting. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Muller RH, Davis SS, Illum L, Mak E (1986) Particle charge and surface hydrophobicity of colloidal drug carriers. In: Gregoriadis G, Senior J, Poste G, (eds) Targeting of drugs with synthetic systems. Plenum Press, New York, pp 239–263

    Google Scholar 

  • Muller BW, Bleich J, Wagenaar B (1993) Microparticle production without organic solvent, Proceeding of 9th international symposium on Microencapsulation. Ankara

    Google Scholar 

  • Muller RH, Ruhl D, Schulze Forster K (1997) Interaction of differentiated HL60 cells with poloxamer and poloxamine surface modifued model drug carriers. Eur J Pharm Sci 5:147–153

    Article  Google Scholar 

  • Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (2000) Utilization of poly(DL-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. J Control Release 67:29–36

    Article  CAS  PubMed  Google Scholar 

  • Mylonas CC, Tabata Y, Langer R, Zohar Y (1995) Preparation and evaluation of polyanhydride microspheres containing gonadotropin-releasing hormone (GnRH) for inducing ovulation and spermiation in fish. J Control Release 35:23–34

    Article  CAS  Google Scholar 

  • Nakano M, Itoh M, Juni K, Sekikawa H, Arita T (1980) Sustained urinary excretion of sulfamethizole following oral administration of enteric coated microcapsules in humans. Int J Pharm 291–298

    Google Scholar 

  • Narayani R, Rao KP (1995) Polymer-coated gelatin capsules as oral delivery devices and their gastrointestinal tract behaviour in humans. J Biomater Sci Polym Ed 7(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Ndumiso M, Buchtova N, Husselmann L, Mohamed G, Klein A, Aucamp M et al (2020) Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum. Colloid Surface B 188:110816

    Article  CAS  Google Scholar 

  • Nihant N, Stassen S, Garndfils C, Jerome R, Teyssie P (1993) Microencapsulation by coacervation of poly(lactide-co-glycolide). Polym Int 32:171–176

    Article  CAS  Google Scholar 

  • Nihant N, Stassen S, Garndfils C, Jerome R, Teyssie Ph (1994) Microencapsulation by coacervation of poly(lactide-c-oglycolide). III. Characterization of the final microspheres. Polym Int 34:289–299

    Article  CAS  Google Scholar 

  • Nihant N, Grandfills C, Jerome R, Teyssie P (1995) Microencapsulation by coacervation of poly(lactide-co-glycolide) IV. Effect of the processing parameters on coacervation and encapsulation. J Control Release 35:117–125

    Article  CAS  Google Scholar 

  • Ogawa Y, Yamamoto M, Takada S, Okada H, Shimamoto T (1988a) Controlled-release of leuprolide acetate from polylactic acid or copoly(lactic/glycolic) acid microcapsules: influence of molecular weight and copolymer ratio of polymer. Chem Pharm Bull 36:1502–1507

    Article  CAS  Google Scholar 

  • Ogawa Y, Yamamoto M, Okada H, Yashiki T, Shimamoto T (1988b) A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem Pharm Bull 36:1095–1103

    Article  CAS  Google Scholar 

  • O’Hagan DT, Rahman D, Jeffery H, Sharif S, Challacombe SJ (1994a) Controlled release microparticles for oral immunization. Int J Pharm 108:133–139

    Article  Google Scholar 

  • O’Hagan DT, Jeffery H, Davis SS (1994b) The preparation and characterization of poly(lactide-co-glycolide) microparticles III. Microparticle/polymer degradation rates and the in vitro release of a model protein. Int J Pharm 103:37–45

    Article  Google Scholar 

  • Okada H (1997) One and three months release injectable microspheres of LH-RH superagonist leuproelin acetate. Adv Drug Deli Rev 28:43–70

    Article  CAS  Google Scholar 

  • Okumu FW, Cleland JL, Borchardt RT (1997) The effect of size, charge and cyclization of model peptides on their in vitro release from DL-PLGA microspheres. J Control Release 49:133–140

    Article  CAS  Google Scholar 

  • Pahlman, Rosengren J, Hjerten S (1977) Hydrophobic interaction chromatography on uncharged sepharose derivatives. Effects of neutral salts on the adsorption of proteins. J Chromatogr 131:99–108

    Google Scholar 

  • Park TG, Lu W, Crotts G (1995) Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly(D, L-lactic acid-co-glycolic acid) microspheres. J Control Release 33:211–222

    Article  CAS  Google Scholar 

  • Pavanetto F, Genta I, Giunchedi P, Conti B (1991) Spray drying as a method for biodegradable microsphere preparation. Proc Int Symp Cont Rel Bioact Mater 18:676–677

    Google Scholar 

  • Pavanetto F, Genta I, Giunchedi P, Conti B (1993) Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation. J Microencap 10:487–497

    Article  CAS  Google Scholar 

  • Pavanetto F, Conti B, Giunchedi P, Genta I, Conte U (1994) Polylactide microspheres for the controlled release of diazepam. Eur J Pharm Biopharm 40:27–31

    CAS  Google Scholar 

  • Pean JM, Venier Julienne MC, Filmon R, Sergent M, Phan Tan Luu R, Benoit JP (1998) Optimization of HSA and NGF encapsulation yields in PLGA microparticles. Int J Pharm 166:105–115

    Article  CAS  Google Scholar 

  • Piskin E (1994) Biodegradable polymers as biomaterials. J Biomater Sci, Polymer Edn 6:775–795

    Article  Google Scholar 

  • Pitt CG, Gratzel MM, Kimmel GL, Surles J, Schindler A (1981) Aliphatic polyesters 2. The degradation of poly(D, L-lactide), poly (e-caprolactone) and their copolymers in vivo. Biomaterials 2:215–220

    Article  CAS  PubMed  Google Scholar 

  • Pottanam Chali S, Ravoo BJ (2019) Polymer nanocontainers for intracellular delivery. Angew Chem Int Ed Engl 59:2962–2972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prieto MJB, Delie F, Fattal E, Tartar A, Puisieux F, Gulik A et al (1994) Characterization of V3 BRU peptide-loaded small PLGA microspheres prepared by a (W1/O)W2 emulsion solvent evaporation method. Int J Pharm 111:137–145

    Article  CAS  Google Scholar 

  • Reich G (1998) Ultrasound-induced degradation of PLA and PLGA during microsphere processing: influence of formulation variables. Eur J Pharm Biopharm 45:165–171

    Article  CAS  PubMed  Google Scholar 

  • Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R (1983) Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4:131–133

    Article  CAS  PubMed  Google Scholar 

  • Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263

    Article  CAS  PubMed  Google Scholar 

  • Rosilio V, Benoit JP, Deyme M, Thies C, Madelmont G (1991) A physicochemical study of the morphology of progesterone-loaded microspheres fabricated from poly(D, L-lactide-co-glycolide). J Biomed Mater Res 25:667–682

    Article  CAS  PubMed  Google Scholar 

  • Rudt S, Muller RH (1992) In vitro phagocytosis assay of nano and microparticles by chemiluminescence: I Effect of analytical parameters, particle size and particle concentration. J Control Release 22:263–272

    Article  CAS  Google Scholar 

  • Rudt S, Muller RH (1993) In vitro phagocytosis assay of nano and microparticles by chemiluminescence II. Effect of surface modification by coating of particles with poloxamer on the phagocytic uptake. J Control Release 25:51–59

    Article  CAS  Google Scholar 

  • Ruiz JM, Tissier B, Benoit JP (1989) Microencapsulation of peptides: A study of the phase separation of poly(D, L-lactic acid-co-glycolic acid) copolymers 50/50 by silicone oil. Int J Pharm 49:69–77

    Article  Google Scholar 

  • Sah H (1999) Protein instability towards organic/water solvent emulsification: Implications for protein microencapsulation into microspheres. PDA J Pharm Sci Technol 53:3–10

    CAS  PubMed  Google Scholar 

  • Sah HK, Toddywala R, Chien YW (1995) Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release. J Microencapsul 12:59–69

    Article  CAS  PubMed  Google Scholar 

  • Sah H, Smith MS, Chern RT (1996) A novel method of preparing PLGA microcapsules utilizing methylethyl ketone. Pharm Res 13:360–367

    Article  CAS  PubMed  Google Scholar 

  • Sansdrap P, Moes AJ (1993) Influence of manufacturing parameters on the size characteristics and release profiles of nifedipine from poly(DL-lactide-co-glycolide) microspheres. Int J Pharm 98:157–164

    Article  CAS  Google Scholar 

  • Sato T, Kanke M, Schroeder HG, DeLuca PP (1988) Porous biodegradable microspheres for controlled drug delivery. I. Assessment of processing conditions and solvent removal techniques. Pharma Res 5:21–30

    Article  CAS  Google Scholar 

  • Scholes PD, Coombes AG, Illum L, Davis SS, Vert M, Davies MC (1993) The preparation of sub-200 nm poly(lactide-co-glycolide) microspheres for site specific drug delivery. J Control Release 25:145–153

    Article  CAS  Google Scholar 

  • Schubert R (1996) Microencapsuiation-Methods and industrial applications. Drugs and the pharmaceutical science series/73 In: Benita S (ed) Marcel Dekker Inc., New York, 1996. p 644, $150.00. ISBN 0-8247-9703-5. Eur J Pharm Biopharm 44:1-644

    Google Scholar 

  • Seki T, Kawaguchi T, Endoh H, Ishikawa K, Juni K, Nakano M (1990) Controlled release of 3’,5’-diester prodrugs of 5-fluoro-2’-deoxyuridine from poly-L-lactic acid microspheres. J Pharm Sci-US 79:985–987

    Article  CAS  Google Scholar 

  • Shenderova A, Burke TG, Schwendeman SP (1997) Stabilization of 10-hydroxycamptothecin in poly(lactide-co-glycolide) microsphere delivery vehicles. Pharm Res 14:1406–1414

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Li XM, McGee JP, Zamb T, Koff W, Wang CY et al (1997) Controlled release microparticles as a single dose hepatitis B vaccine: evaluation of immunogenicity in mice. Vaccine 15:475–481

    Article  CAS  PubMed  Google Scholar 

  • Soriano I, Delgado A, Diaz RV, Evora C (1995) Use of surfactants in polylactic acid protein microspheres. Drug Dev Ind Pharm 549–558

    Google Scholar 

  • Stassen S, Nihant N, Martin V, Grandfills C, Jerome R, Teyssie P (1994) Microencapsulation by coacervation of poly(lactide-co-glycolide). I Physicochemical characteristics of the phase separation process. Polymer 35:777–785

    Article  CAS  Google Scholar 

  • Stolnik S, Davies MC, Illum L, Davis SS, Boustta M, Vert M (1994) The preparation of sub-200 nm biodegradable colloidal particles from poly(-malic acid-co-benzyl malate) copolymers and their surface modification with poloxamer and poloxamine surfactants. J Control Release 30:57–67

    Article  CAS  Google Scholar 

  • Sturesson C, Carlfors J (2000) Incorporation of protein in PLG-microspheres with retention of bioactivity. J Control Release 67:171–178

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y, Langer R (1993) Polyanhydride microspheres that display near constant release of water-soluble model drug compounds. Pharm Res 10:391–399

    Article  CAS  PubMed  Google Scholar 

  • Tabata Y, Takebayashi Y, Ueda T, Ikada Y (1993a) A formulation method using D, L-lactic acid oligomer for protein release with reduced initial burst. J Control Release 23:55–63

    Article  CAS  Google Scholar 

  • Tabata Y, Gutta S, Langer R (1993b) Controlled delivery systems for proteins using polyanhydride microspheres. Pharm Res 10:487–496

    Article  CAS  PubMed  Google Scholar 

  • Takahata H, Lavelle EC, Coombes AG, Davis SS (1998) The distribution of protein associated with poly(DL-lactide co-glycolide) microparticles and its degradation in simulated body fluids. J Control Release 50:237–246

    Article  CAS  PubMed  Google Scholar 

  • Tamada J, Langer R (1992) The development of polyanhydrides for drug delivery applications. J Biomat Sci-Polym E 3:315–353

    Article  CAS  Google Scholar 

  • Troster SD, Kreuter J (1988) Contact angle of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces. Int J Pharm 45:91–100

    Article  Google Scholar 

  • Uchida T, Yoshida K, Goto S (1996a) Preparation and characterization of polylactic acid microspheres containing water-soluble dyes using a novel w/o/w emulsion solvent evaporation method. J Microencapsul 13:219–228

    Article  CAS  PubMed  Google Scholar 

  • Uchida T, Yagi A, Oda Y, Goto S (1996b) Microencapsulation of ovalbumin in poly(lactide-co-glycolide) by an oil-in-oil (o/o) solvent evaporation method. J Microencapsul 13:509–518

    Article  CAS  PubMed  Google Scholar 

  • Vert M, Mauduit J, Li S (1994) Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Visscher GE, Robison RL, Maulding HV, Fong JW, Pearson JE, Argentieri GJ (1985) Biodegradation of and tissue reaction to 50:50 poly(DL-lactide-co-glycolide) microcapsules. J Biomed Mater Res 19:349–365

    Article  CAS  PubMed  Google Scholar 

  • Wagenaar BW, Muller BW (1994) Piroxicam release from spray dried biodegradable microspheres. Biomaterials 15:49–54

    Article  CAS  PubMed  Google Scholar 

  • Wallis KH, Muller RH (1993) Determination of the surface hydrophobicity of colloidal dispersions by mini-hydrophobic interaction chromatography. Pharm Ind 55:1124–1128

    Google Scholar 

  • Wang N, Wu XS (1998) A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres using agarose hydrogel. Int J Pharm 166:1–14

    Article  CAS  Google Scholar 

  • Wang HT, Palmer H, Linhardt RJ, Flanagan DR, Schmitt E (1990) Degradation of poly(ester) microspheres. Biomaterials 11:679–685

    Article  CAS  PubMed  Google Scholar 

  • Wen R, Umeano AC, Chen P, Farooqi AA (2018) Polymer-based drug delivery systems for cancer. Crit Rev Ther Drug Carrier Syst 35:521–553

    Article  PubMed  Google Scholar 

  • Witschi C, Doelker E (1998) Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. J Control Release 51:327–341

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Anderson JM (1993) In vivo biocompatibility studies of medisorb 65/35 D, L-lactide/glycolide copolymer microspheres. J Control Release 24:81–93

    Article  CAS  Google Scholar 

  • Yan C, Resau JH, Hewetson J, West M, Rill WL, Kende M (1994) Characterization and morphological analysis of protein loaded poly(lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J Control Release 32:231–241

    Article  CAS  Google Scholar 

  • Yoshioka T, Hashida M, Muranishi S, Sezaki H (1981) Specific delivery of mitomycin C to the liver, spleen and lung; nano and microspherical carriers of gelatin. Int J Pharm 8:131–141

    Article  Google Scholar 

  • Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ et al (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zambaux MF, Faivre Fiorina B, Bonneaux F, Marchal S, Merlin JL, Dellacherie E et al (2000) Involvement of neutrophil granulaocytes in the uptake of biodegradable non-stealth and stealth nanoparticles in guinea pig. Biomaterials 21:975–980

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandita G. Das .

Editor information

Editors and Affiliations

Glossary

Atomization

A process of breaking bulk liquids into small droplets.

Biodegradable polymers

Polymers that degrade in the human and animal body and their degradation products are non-toxic.

Coacervation technique

A technique that involves the separation of a liquid phase of coating material from a polymeric solution and precipitation with the suspended core particles.

Dielectric constant

A measure of a substance’s ability to insulate charges from each other. Taken as a measure of solvent polarity, higher ε means higher polarity, and greater ability to stabilize charges.

Diffusion coefficient

A proportionality constant between the molar flux due to molecular diffusion and the gradient in the concentration of the species.

Glass transition temperature

The temperature at which certain polymers are rubbery (flexible or soft) but not in a completely molten state.

Hydrophilic polymeric matrix

A homogeneous aqueous soluble polymeric section.

Krebs cycle

The sequence of reactions by which most living cells generate energy during the process of aerobic respiration. It takes place in the mitochondria, consuming oxygen, producing carbon dioxide and water as waste products, and converting ADP to energy-rich ATP.

Supercritical fluid

A substance at a temperature and pressure above its critical point. It can behave like a gas, and dissolve materials like a liquid.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, N.G., Das, S.K. (2020). Development of Biodegradable Polymeric Nanoparticles for Systemic Delivery. In: Lai, WF. (eds) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-54490-4_6

Download citation

Publish with us

Policies and ethics