Skip to main content

Surface Modification Strategies in Enhancing Systemic Delivery Performance

  • Chapter
  • First Online:
Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 13))

Abstract

In Chap. 13, electrospinning has been introduced as a strategy to manipulate the physical properties of a therapeutics-loaded system and to enhance the versatility of drug delivery. In the remaining chapters in Section V, the use of chemical means to manipulate the surface properties of a carrier for more effective systemic drug delivery will be discussed. As a matter of fact, a therapeutic agent must stay in the body as long as it is needed to reach the intended site of action in order to elicit a therapeutic response. To extend the blood retention time of an agent, one commonly used strategy is surface modification. In this chapter, we will first discuss the principles of clearance of particulate drug delivery systems from the body by the mononuclear phagocyte system (MPS), followed by a discussion of the possible use of polymers as modifiers of the surface properties of the particulate systems for enhanced performance in systemic drug delivery. Finally, the applications of surface-modified particulates in non-MPS targeting, including cancer chemotherapy and delivery across the blood–brain barrier, will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y et al (1996) P-glycoprotein mediated acquired multidrug resistance of human lung cancer cells in vivo. Br J Cancer 74:1929–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abuchowski A et al (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581

    CAS  PubMed  Google Scholar 

  • Al Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Google Scholar 

  • Allemann E et al (1995) PEG-coated poly(lactic acid) nanoparticles for the delivery of hexadecafluro zinc phthalocyanine to EMT-6 mouse mammary tumours. J Pharm Pharmacol 47:382–387

    Article  CAS  PubMed  Google Scholar 

  • Allemann E, Gurny R, Doelker E (1993) Drug loaded nanoparticles - Preparation methods and drug targeting issues. Eur J Pharm Biopharm 39:173–191

    CAS  Google Scholar 

  • Allen TM (1989) Stealth liposomes: avoiding reticuloendothelial uptake in liposomes. In: Lopez-Bernstein G, Fidler IJ (eds) Liposomess in the therapy of infectious diseases and cancer. Alan R. Liss, New York, p 405

    Google Scholar 

  • Allen TM et al (1991) Uptake of liposomes by cultured mouse bone marrow macrophages: Influence of liposome composition and size. Biochem Biophys Acta 1061:56–64

    Article  CAS  PubMed  Google Scholar 

  • Allen TM (1994) The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drug Deliv Rev 13:285–309

    Article  CAS  Google Scholar 

  • Allen TM, Chonn A (1987) Large unilameller liposomes with low uptake into reticuloendothelial system. FEBS Lett 223:42–46

    Article  CAS  PubMed  Google Scholar 

  • Alyautdin R et al (1995) Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80 coated poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 41:44–48

    CAS  Google Scholar 

  • Amiji M, Park K (1992) Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13:682–692

    Article  CAS  PubMed  Google Scholar 

  • Amiji M, Park K (1994) Surface modification of polymeric biomaterials with poly(ethylene oxide). In: Shalaby SW et al (eds) Polymers of biological and biomedical significance. American Chemical Society, Washington DC, pp 135–146

    Google Scholar 

  • Andrade JD (1976) Interfacial phenomena and biomaterials. Med Instrum 7:110–120

    Google Scholar 

  • Andrade JD (1987) Surfaces and blood compatibility. Trans Amer Soc Artif Intern Organs 7:75–76

    Article  Google Scholar 

  • Andrade JD, Halady V (1986) Protein adsorption and materials biocompatibility. Adv Polym Sci 79:1–63

    Article  CAS  Google Scholar 

  • Artursson P, Laakso T, Edman P (1983) Acrylic microspheres in vivo: Blood elimination kinetics and organ distribution of microparticles with different surface characteristics. J Pharm Sci 72:1415–1420

    Article  Google Scholar 

  • Astier A, Doat B, Ferrer MJ et al (1988) Enhancement of adriamycin antitumor activity by its binding with an intercellular sustained release form, polymethacrylate nanospheres, in U-937 cells. Cancer Res 48:1835–1841

    CAS  PubMed  Google Scholar 

  • Atkinson JP, Frank MM (1974) Interaction of IgM antibody and complement in the immune clearance and destruction of erythrocytes in man. J Clin Invest 54:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baggetto LG (1997) Non P-glycoprotein novel proteins involved in human cancer multidrug resistance. Bull Cancer 84:385–390

    CAS  PubMed  Google Scholar 

  • Bailon P, Berthold W (1998) Polyethylene glycol—conjugated pharmaceutical proteins. Pharm Sci Technol Today 1:352–356

    Article  CAS  Google Scholar 

  • Ban T (1992) Pleiotropic, multidrug-resistance phenotype and P-glycoprotein: a review. Chemotherapy 38:191–196

    Article  CAS  PubMed  Google Scholar 

  • Barrand MA, Bagrij T, Neo SY (1997) Multidrug resistance associated protein: a protein distinct from P-glycoprotein involved in cytotoxic drug expulsion. Gen Pharmacol 26:639–645

    Article  Google Scholar 

  • Barui AK et al (2020) Cancer-targeted nanomedicine: overcoming the barrier of the protein corona. Adv Ther 3:1900124

    Article  Google Scholar 

  • BASF Performance Chemicals, Pluronic and Tetronic Surfactants. 2020 [cited 2020 Jan 10]. Available from: https://www.basf.com/hk/en.html

  • Blume G, Cevc G (1993) Molecular mechanism of the lipid vesicle longevity in vivo. Biochim Biophys Acta 1146:157–168

    Article  CAS  PubMed  Google Scholar 

  • Blunk T et al (1993a) Differential adsorption: Effect of plasma protein adsorption patterns on organ distribution of colloidal drug carriers. Proc Int Symp Control Rel Bioact Mater 20:256–257

    Google Scholar 

  • Blunk T et al (1993b) Differential adsorption: effect of plasma protein adsorption patterns on organ distribution of colloidal drug carriers. Proc Int Symp Cont Rel Bioact Mater 20:256–257

    Google Scholar 

  • Borchard G et al (1994) Uptake of surfactant coated poly(methyl methacrylate) nanoparticles by bovine brain microvessel endothelial cell monolayers. Int J Pharm 110:29–35

    Article  CAS  Google Scholar 

  • Brasseur F, Couvreur P, Kante B et al (1980) Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: Increased efficiency against an experimental tumor. Eur J Cancer 16:1441–1445

    Article  CAS  PubMed  Google Scholar 

  • Brown DL, Lachmann PJ, Dacie JV (1970) The in vivo behaviour of complement coated red cells: Studies in C6 deficient, C3-depleted and normal rabbits. Clin Exp Immunol 7:401–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao et al. ZT (2020) Protein binding affinity of polymeric nanoparticles as a direct indicator of their pharmacokinetics. ACS Nano

    Google Scholar 

  • Cerrai P, Tricoli M (1993) Block copolymers from L-lactide and poly(ethylene glycol) through a non-catalyzed route. Makromol Chem Rapid Commun 14:529–538

    Article  CAS  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Nat Acad Sci 103(13):4930–4934

    Google Scholar 

  • Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26(1):244–249

    Google Scholar 

  • Chin TH, Nyilas E, Turcotte LR (1978) Microcalorimetric and electrophoretic studies of protein sorption. Trans Am Soc Artif Intern Organs 24:389–402

    Google Scholar 

  • Cho EC et al (2010) The effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells. Small 6:517–522

    Article  CAS  PubMed  Google Scholar 

  • Churchill JR, Hutchinson FG (1986) Biodegradable amphipathic copolymers, EP

    Google Scholar 

  • Coombes AGA et al (1994) Resorbable polymeric microspheres for drug delivery—production and simultaneous surface modification using PEO-PPO surfactants. Biomaterials 15:673–680

    Article  CAS  PubMed  Google Scholar 

  • Couvreur P, Kante B, Grislain L et al (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin nanoparticles. J Pharm Sci 71:790–792

    Article  CAS  PubMed  Google Scholar 

  • De Jaeghere F et al (1999) Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles : Influence on physical stability and in vitro cell uptake. Pharm Res 16:859–866

    Article  PubMed  Google Scholar 

  • Delgado C, Francis GE, Fisher D (1992) The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst 9:249–304

    CAS  PubMed  Google Scholar 

  • De Magalhães JP, Stevens M, Thornton D (2017) The business of anti-aging science. Trends Biotechnol 35:1062–1073

    Google Scholar 

  • Deng XM et al (1990) Synthesis and characterization of block copolymers from D, L-lactide and poly(ethylene glycol) with stannous chloride. J Polym Sci B 28:411–416

    Article  CAS  Google Scholar 

  • Devine DV et al (1994) Liposome complement interaction in rat serum: Implications for liposome survival studies. Biochim Biophys Acta 1191:43–51

    Article  CAS  PubMed  Google Scholar 

  • Diederichs JE et al (1996) Adsorption of plasma components on liposomes of different size. Eur J Pharm Biopharm 42:37S

    Google Scholar 

  • Dunn SE et al (1994a) Biodistribution studies investigating poly(lactide-co-glycolide) nanospheres surface modified by novel biodegradable copolymers. Proc Int Symp Control Rel Bioact Mater 21:210–211

    Google Scholar 

  • Dunn SE et al (1994b) Biodistribution studies investigating poly(lactide-co-glycolide) nanospheres surface modified by novel biodegradable copolymers. Proc Intern Symp Control Rel Bioact Mater 21:210–211

    Google Scholar 

  • Ehlenberger AG, Nussenzweig V (1977) The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med 145:357–371

    Article  CAS  PubMed  Google Scholar 

  • Elgert KD (1996) Immunology: understanding the immune system. Wiley-Liss Inc., New York

    Google Scholar 

  • Elias DR et al (2013) Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine 9:194–201

    Article  CAS  PubMed  Google Scholar 

  • Elkin SR, Bendris N, Reis CR, Zhou Y, Xie Y, Huffman KE, Minna JD, Schmid SL (2015) A systematic analysis reveals heterogeneous changes in the endocytic activities of cancer cells. Cancer Res 75(21):4640–4650

    Google Scholar 

  • Erickson TB et al (1996) Acute renal toxicity after ingestion of Lava light liquid. Ann Emerg Med 27:781–784

    Article  CAS  PubMed  Google Scholar 

  • Fang Y et al (2017) Cleavable PEGylation: a strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv 24:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes M et al (2016) Systematic analysis of the gerontome reveals links between aging and age-related diseases. Hum Mol Genet 25:4804–4818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filion MC, Philips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta 1329:345–356

    Article  CAS  PubMed  Google Scholar 

  • Ford JM, Hait WN (1990) Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 42:155–199

    CAS  PubMed  Google Scholar 

  • Gabizon A et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992

    CAS  PubMed  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1992) The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta 1103:94–100

    Article  CAS  PubMed  Google Scholar 

  • Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery-polyglycolic/poly(lactic acid) homo- and copolymers. Polymer 20:1459–1464

    Article  CAS  Google Scholar 

  • Gipps EM et al (1988) Distribution of polyhexylcyanoacrylate nanoparticles in nude mice over extended times and after repeated injection. J Pharm Sci 77:208–209

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (1987) Mononuclear phagocyte system and tissue homeostasis. In: Weatherhall DJ, Ledingham JGG, Warrell DA (eds) Oxford textbook of medicine. Oxford University Press, Oxford

    Google Scholar 

  • Gottesman MM, Pastan I (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385–427

    Article  CAS  PubMed  Google Scholar 

  • Gottesman MM et al (1995) Genetic analysis of the multidrug transporter. Annu. Rev. Genet. 29:607–649

    Article  CAS  PubMed  Google Scholar 

  • Gref R et al (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  CAS  PubMed  Google Scholar 

  • Griveau A et al (2018) Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell 17:e12835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PK (1990) Drug targeting in cancer chemotherapy: a clinical perspective. J Pharm Sci 79:949–962

    Article  CAS  PubMed  Google Scholar 

  • Hagan SA et al (1995) PLA-PEG micelles—a novel drug delivery system. Proc Int Symp Cont Rel Bioact Mater 22:194–195

    Google Scholar 

  • Harper GR et al (1991) Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat kupffer cells in vitro. Biomaterials 12:695–699

    Article  CAS  PubMed  Google Scholar 

  • Harris J (1985) Laboratory synthesis of polyethylene glycol derivatives. J Macromol Sci Rev Macromol Chem Phys 25:325–373

    Article  Google Scholar 

  • Hatakeyama H, Akita H, Harashima H (2013) The polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull 36:892–899

    Article  CAS  PubMed  Google Scholar 

  • Hawley AE, Illum L, Davis SS (1997) Preparation of biodegradable, surface engineered PLGA nanospheres with enhanced lymphatic drainage and lymph node uptake. Pharm Res 14:657–661

    Article  CAS  PubMed  Google Scholar 

  • Haynes CA, Norde W (1995) Structures and stabilities of adsorbed proteins. J Colloid Interface Sci 169:313–328

    Article  CAS  Google Scholar 

  • Hollo Z et al (1996) Transport properties of the multidrug resistance associated protein (MRP) in human tumor cells. FEBS Let 383:99–104

    Article  CAS  Google Scholar 

  • Ibrahim MX et al (2013) Targeting isoprenylcysteine methylation ameliorates disease in a mouse model of progeria. Science 340:1330–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illum L, Davis SS (1982) The targeting of drugs parenterally by the use of microspheres. Bull Parenter Drug Assoc 36:242–248

    CAS  Google Scholar 

  • Illum L, Davis SS (1983) Effect if the nonionic surfactant poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration. J Pharm Sci 72:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Illum L, Davis SS (1984) The organ uptake of intravenously administered colloidal particles can be altered using nonionic surfactant (poloxamer 338). FEBS Lett 167:79–82

    Article  CAS  PubMed  Google Scholar 

  • Illum L, Hunneyball IM, Davis SS (1986) The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int J Pharm. 29:53–65

    Article  CAS  Google Scholar 

  • Illum L et al (1987) Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials 8:113–117

    Article  CAS  PubMed  Google Scholar 

  • Ishida T et al (2007) PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release 122:349–355

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo MA et al (1996) Relationship of LRP human major vault protein to in vitro and clinical resistance to anticancer drugs. Cytotechnology 19:191–197

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    Article  CAS  PubMed  Google Scholar 

  • Jedlitschky G et al (1996) Transport of glutathione, glucuronate and sulfate conjugates by the MRP gene-encoded export pump. Cancer Res 56:988–994

    CAS  PubMed  Google Scholar 

  • Jeon SI, Andrade JD (1991) Protein-surface interactions in the presence of polyethylene oxide II Effect of protein size. J Colloid Interface Sci 142:159–166

    Article  CAS  Google Scholar 

  • Jeon SI et al (1991) Protein-surface interactions in the presence of polyethylene oxide, I Simplified theory. J Colloid Interface Sci 142:149–158

    Article  CAS  Google Scholar 

  • Jiang W et al (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  CAS  PubMed  Google Scholar 

  • Juliano RL, Stemp D (1975) The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Commun 63:651–658

    Article  CAS  Google Scholar 

  • Kamps JA et al (1994) Massive targeting of liposomes, surface-modified with anionized albumins, to hepatic endothelial cells. Proc Natl Acad Sci 94:11681–11685

    Article  Google Scholar 

  • Kato T et al (1981) Quasielastic light scattering measurements of polystyrene lattices and conformation of poly(oxyethylene) adsorbed on the lattices. Polymer J 13:1037–1043

    Article  CAS  Google Scholar 

  • Kawaguchi H et al (1985) Interaction between proteins and latex particles having different surface structures. Colloids Surf 13:295–311

    Article  CAS  Google Scholar 

  • Kilbanov AL et al (1990) Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    Article  Google Scholar 

  • Kim SW (1974) Role of carbohydrates in platelet adhesion. J Biomed Mater Res 8:393–399

    Article  PubMed  Google Scholar 

  • Kissel T et al (1994) Release properties of macromolecules from microspheres of a ABA triblock copolymer consisting of poly(lactic-co-glycolic acid) and polyoxyethylene. Proc Intern Symp Control Rel Bioact Mater 21:286–287

    Google Scholar 

  • Klein J (1986) Surface interactions with adsorbed macromolecules. J Colloid Interface Sci 111:305–313

    Article  CAS  Google Scholar 

  • Koosha F et al (1989) Poly-hydoxybutyrate as a drug carrier. CRC Crit Rev Ther Drug Carrier Syst 6:117–130

    CAS  Google Scholar 

  • Kreuter J (1983) Evaluation of nanoparticles as drug delivery systems III: materials, stability, toxicity, possibilities of targeting, and use. Pharm Acta Helv 58:242–250

    CAS  PubMed  Google Scholar 

  • Kreuter J, Hartmann HR (1983) Comparative study on the cytotostatic effects and the tissue distribution of 5-flurouracil in a free form and bound to polybutylcyanoacrylate nanoparticles in sarcoma 180-bearing mice. Oncology 40:363–366

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J et al (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J et al (1997) Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood-brain barrier using surfactant coated nanoparticles. J Control Release 49:81–87

    Article  CAS  Google Scholar 

  • Kricheldorf H, Meier-Haack J (1993) Polylactones, 22a) ABA triblock copolymers of L-lactic acid and poly(ethylene glycol). Makromol Chem 194:715–725

    Article  CAS  Google Scholar 

  • Krishnan A, Fitz CM, Andritsh I (1997) Drug retention, efflux, and resistance in tumor cells. Cytometry 229:279–285

    Article  Google Scholar 

  • Kruh GD et al (1995) Expression pattern of MRP in human tissues and adult solid tumor cell lines. J Natl Cancer Inst 87:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Kubiak C et al (1989) Increased cytotoxicity of nanoparticle-carried adriamycin in vitro and potentiation by verapamil and amioderone. Biomaterials 10:553–556

    Article  CAS  PubMed  Google Scholar 

  • Laakso T, Artursson P, Sjoholm I (1986) Biodegradable microspheres IV: factors affecting the distribution and degradation of polyacryl starch microparticles. J Pharm Sci 75:962–967

    Article  CAS  PubMed  Google Scholar 

  • Labarre D et al (1994) Complement activation by nanoparticulate carriers. Proc Intern Symp Control Rel Bioact Mater 21:91–92

    Google Scholar 

  • Lacasse FX, Hildgen P, McMullen JN (1998) Surface and morphology of spray-dried pegylated PLA microspheres. Int J Pharm 174:101–109

    Article  CAS  Google Scholar 

  • Lacasse FX et al (1988) Influence of surface properties at biodegradable microspheres surfaces: effects on plasma protein adsorption and phagocytosis. Pharm Res 15:312–317

    Article  Google Scholar 

  • Lacasse FX et al (1998) Influence of surface properties at biodegradable microsphere surfaces: effects on plasma protein adsorption and phagocytosis. Pharm Res 15:312–317

    Article  CAS  PubMed  Google Scholar 

  • Lai WF (2013) Nucleic acid delivery: roles in biogerontological interventions. Ageing Res Rev 12:310–315

    Google Scholar 

  • Lai WF, He ZD (2016) Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release 243:269–282

    Google Scholar 

  • Lai WF, Rogach AL, Wong WT (2017) Molecular design of upconversion nanoparticles for gene delivery Chem Sci 8:7339–7358

    Google Scholar 

  • Lai WF, Shum HC (2016) A stimuli-responsive nanoparticulate system using poly(ethylenimine)-graft-polysorbate for controlled protein release. Nanoscale 8:517–528

    Google Scholar 

  • Lai WF, Wong WT (2018) Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol 36:713–728

    Google Scholar 

  • Lai WF, Rogach AL, Wong WT (2017) Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 46:6379–6419

    Google Scholar 

  • Lasic DD et al (1991) Sterically stabilized liposomes - A hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070:187–192

    Article  CAS  PubMed  Google Scholar 

  • Law SK, Levine RP (1977) Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci 74:2701–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leininger RI (1972) Polymers as surgical implants. CRC Crit Rev Bioeng 1:333–381

    CAS  PubMed  Google Scholar 

  • Leroux JC et al (1995) An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(D, L-lactic acid) nanoparticles by human monocytes. Life Sci 57:695–703

    Article  CAS  PubMed  Google Scholar 

  • Lherm C et al. (1992) Alkyl cyanoacrylate drug carriers. II: cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 84:13–22

    Google Scholar 

  • Li X et al (2000) Influence of process parameters on the protein stability encapsulated in poly-DL-lactide-poly(ethylene glycol) microspheres. J Control Release 68:41–52

    Article  CAS  PubMed  Google Scholar 

  • Ling V (1987) Multidrug resistance and P-glycoprotein expression. Ann NY Acad Sci 507:7–8

    Article  CAS  PubMed  Google Scholar 

  • Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40:3–8

    Article  Google Scholar 

  • Lu F et al (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    Article  CAS  PubMed  Google Scholar 

  • Lundstrom I, Elwing H (1990) Simple kinetic models for protein exchange reactions on solid surfaces. J Colloid Interface Sci 136:68–84

    Article  Google Scholar 

  • Maaben S et al. (1993) Comparison of cytotoxicity between polyester nanoparticles and solid-lipid nanoparticles (SLN). Proc Intern Symp Control Rel Bioact Mater 20:490–491

    Google Scholar 

  • Mackie AR, Mingins J, Dann R (1991) Preliminary studies of β-lactoglobulin adsorbed on polystyrene latex. In: Dickinson E (ed) Food Polymers Gels and Colloids. Royal Soc. Chemistry, Cambridge, UK, pp 96–112

    Chapter  Google Scholar 

  • Maste M et al (1994) Synthesis and characterization of a short-haired poly(ethylene oxide) grafted polystyrene latex. Colloids Surf A Physicochem Eng Asp 83:255–260

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway JCA (1997) Innate immunity: Impact on the adaptive immune response. Curr Opin Immunol. 9:4–9

    Article  CAS  PubMed  Google Scholar 

  • Metchnikoff E (1891) Lectures on the comparative pathology of inflammation. In: Kegan Paul, Trench, Traubner & Co., London

    Google Scholar 

  • Moghimi SM et al (1993a) Coating particles with a block co-polymer (poloxamine-908) suppress opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1179:157–165

    Article  CAS  PubMed  Google Scholar 

  • Moghimi S et al (1993b) Coating particles with a block copolymer (poloxamine 908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1179:157–165

    Article  CAS  PubMed  Google Scholar 

  • Monkkonen J et al (1994) Effects of liposome surface charge and size on the intracellular delivery of clodronate and gallium in vitro. Int J Pharm. 107:189–197

    Article  Google Scholar 

  • Monnier A et al (2016) Preparation and characterization of biodegradable polyhydroxybutyrate-co-hydroxyvalerate/polyethylene glycol-based microspheres. Int J Pharm 513:49–61

    Article  CAS  PubMed  Google Scholar 

  • Moretti J, Blander JM (2014) Insights into phagocytosis-coupled activation of pattern recognition receptors and inflammasomes. Curr Opin Immunol 26:100–110

    Google Scholar 

  • Mori A et al (1991) Influence of steric barrier activity of amphipathic poly(ethylene glycol) and ganglioside GM1 on the circulation time of liposomes on the target binding of immunoliposomes in vivo. FEBS Lett 284:263–266

    Article  CAS  PubMed  Google Scholar 

  • Muller BG, Kissel T (1993) Camouflage nanospheres: a new approach to bypassing phagocytic blood clearance by surface modified particulate carriers. Pharm Pharmacol Lett 3:67–70

    Google Scholar 

  • Muller RH, Wallis KH (1993) Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm 89:25–31

    Article  Google Scholar 

  • Muller RH et al (1996) Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–170

    Article  CAS  PubMed  Google Scholar 

  • Naper DH (1983) Polymeric stabilization of colloidal dispersions. Academic Press, New York

    Google Scholar 

  • Natarajan K, Baer MR, Ross DD (2015) Role of breast cancer resistance protein (BCRP, ABCG2) in cancer outcomes and drug resistance. In: Resistance to targeted ABC transporters in cancer, pp 53–88, Springer, Cham

    Google Scholar 

  • Nemati F, Dubernet C, De Verdiere AC et al (1994) Some parameters influencing cytotoxicity of free doxorubicin and doxorubicin-loaded nanoparticles in sensitive and multidrug resistant leukemic murine cells: Incubation time, number of nanoparticles per cell. Int J Pharm 102:55–62

    Article  CAS  Google Scholar 

  • Neumann AW et al (1979) Surface thermodynamics of leukocyte and platelet adhesion to polymer surfaces. Cell Biophys. 1:79–92

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BJVH (2017) Protein corona: A new approach for nanomedicine design. Int J Nanomed 12:3137–3151

    Article  CAS  Google Scholar 

  • Nyilas E, Ward RS (1977) Development of blood compatible elastomers. J Biomed Mater Res 8:69–84

    Article  Google Scholar 

  • Oss CJV (1978) Phagocytosis as a surface phenomenon. Ann Rev Microbiol 32:19–39

    Article  Google Scholar 

  • Pain D et al (1984) Increased circulatory half-life of liposomes after conjugation with dextran. J Biosci 6:811–816

    Article  CAS  Google Scholar 

  • Papahdjopoulos D et al (1991) Sterically—stabilized liposomes—improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci 88:11460–11464

    Article  Google Scholar 

  • Patel HM, Moghimi SM (1990) Tissue specific serum opsonins and phagocytosis of liposomes. In: Gregoriadis G, Allison AC, Poste G (eds) Targeting of drugs 2—optimization strategies. Plenum Press, New York, p 87

    Google Scholar 

  • Patel HM, Tuzel NS, Rymen BE (1983) Inhibitory effect of cholesterol on the uptake of liposomes by liver and spleen. Bioche. Biophys. Acta 761:142–151

    Article  CAS  Google Scholar 

  • Pean JM et al (1999) Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres. Pharm Res 16:1294–1299

    Article  CAS  PubMed  Google Scholar 

  • Pelaz B et al (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008

    Article  CAS  PubMed  Google Scholar 

  • Peracchia MT et al (1994) PEG-coated nanospheres for intravenous drug delivery and targeting. Proc Int Symp Control Rel Bioact Mater 21:513–514

    Google Scholar 

  • Peracchia MT et al (1997) Development of sterically stabilized poly(isobutyl-2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res 34:317–326

    Article  CAS  PubMed  Google Scholar 

  • Petrak K (1993) Design and properties of particulate carriers for intravascular administration. In: Rolland A (ed) Pharmaceutical particulate carriers. Marcel Dekker, New York

    Google Scholar 

  • Piskin E et al (1995) Novel PDLLA/PEG copolymer micelles as drug carriers. J Biomater Sci Polymer Edn 7:359–373

    Article  CAS  Google Scholar 

  • Rejman J et al (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice KG, Lee YC (1990) Modification of triantennary glycopeptide into probes for the asialoglycoprotein of hepatocytes. J. Biol. Chem. 265:18423–18428

    CAS  PubMed  Google Scholar 

  • Roerdink F et al (1983) Effects of negatively charged lipids on phagocytosis of liposomes opsonized by complement. Biochim Biophys Acta 734:33–39

    Article  CAS  PubMed  Google Scholar 

  • Rogers KE, Carr BI, Tokes ZA (1983) Cell surface mediated cytotoxicity of polymer bound adriamycin against drug resistant hepatocytes. Cancer Res 43:2741–2748

    CAS  PubMed  Google Scholar 

  • Roitt I, Brostoff J, Male D (1996) Immunology. Mosby, London

    Google Scholar 

  • Ronneberger B, Kissel T, Anderson JM (1997) Biocompatibility of ABA triblock copolymer microparticles consisting of poly(L-lactic-co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-blocks in rats after intramuscular injection. Eur J Pharm Biopharm 43:19–28

    Article  CAS  Google Scholar 

  • Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46:255–263

    Google Scholar 

  • Ross DD (2000) Novel mechanisms of drug resistance in leukemia. Leukemia 14:467–473

    Article  CAS  PubMed  Google Scholar 

  • Ross GD, Cain JA, Lachmann PJ (1985) Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin and functions as a receptor for zymozan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol 134:3307–3315

    CAS  PubMed  Google Scholar 

  • Sawyer PN (1984) Surface charge and thrombosis. Ann NY Acad Sci 416:561–584

    Article  Google Scholar 

  • Schöttler S, Landfester K, Mailänder V (2016) Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew Chem Int Ed Engl 55:8806–8815

    Article  PubMed  CAS  Google Scholar 

  • Schwendner RA, Lagocki PA, Rahman YE (1984) The effect of charge and size on the interaction of unilameller liposomes with macrophages. Biochim Biophys Acta 772:93–101

    Article  Google Scholar 

  • Scott GBD, Williams HS, Marriott PM (1967) The phagocytosis of colloidal particles of different sizes. Br J Exp Path 48:411–416

    CAS  Google Scholar 

  • Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. CRC Crit Rev Ther Drug Carrier Syst 3:123–193

    Google Scholar 

  • Senior J et al (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol) coated vesicles. Biochem Biophys Acta 1062:77–82

    Article  CAS  PubMed  Google Scholar 

  • Soderquist ME, Walton AG (1980) Structural changes in proteins adsorbed on polymer surfaces. J Colloid Interface Sci 75:386–397

    Article  CAS  Google Scholar 

  • Stevels WM et al (1995) Stereocomplex formation in ABA triblock copolymers of poly(lactide) (A) and polyethylene glycol (B). Macromol Chem Phys 196:3687–3694

    Article  CAS  Google Scholar 

  • Stolnik S et al (1994) Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res 11:1800–1808

    Article  CAS  PubMed  Google Scholar 

  • Stossel TP et al. (1972) Quantitative studies of phagocytosis by polymorphonuclear leukocytes. Use of emulsions to measure the initial rate of phagocytosis. J Clin Invest 51:615–624

    Google Scholar 

  • Sugibayashi K et al. (1977) Drug carrier property of albumin microspheres in chemotherapy. I. Tissue distribution of microsphere entrapped 5-flurouracil in mice. Chem Pharm Bull 25:3433–3434

    Google Scholar 

  • Tabata Y, Ikada Y (1988) Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res 22:837–858

    Article  CAS  PubMed  Google Scholar 

  • Tokes ZA, Rogers KE, Rembaum A (1982) Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity. Proc Natl Acad Sci 79:2026–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin VP, Papisov ML (1994a) Why do polyethylene glycol-coated liposomes circulate so long? J Liposome Res 4:725–739

    Article  Google Scholar 

  • Torchilin VP, Papisov MI (1994b) Hypothesis: why do polyethylene glycol-coated liposomes circulate so long? J Liposome Res 4:725–739

    Article  Google Scholar 

  • Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long circulating? Adv Drug Deli Rev 16:141–155

    Article  CAS  Google Scholar 

  • Tosi G, Duskey JT, Kreuter J (2020) Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin Drug Delivery 17(1):23–32

    Google Scholar 

  • Troster SD, Muller U, Kreuter J (1990a) Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int J Pharm 61:85–100

    Article  Google Scholar 

  • Troster SD, Muller U, Kreuter J (1990b) Modification of body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int J Pharm 61:85–100

    Article  Google Scholar 

  • Van Oss CJ, Gillman CF, Neumann AW (1975) Phagocytic engulfment and cell adhesiveness as cellular surface phenomena. Marcel Dekker, New York

    Google Scholar 

  • Verrecchia T et al (1995) Non-Stealth (Poly(lactic acid/albumin) and stealth (poly(lactic acid—polyethylene glycol)) nanoparticles as injectable drug carriers. J Control Release 36:49–61

    Article  CAS  Google Scholar 

  • Vroman L (1982) Protein/suface interaction. In: Szycher M (ed) Biocompatible polymers, metals, and composites. Technomic Publishing, Lancaster

    Google Scholar 

  • Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ishida T, Kiwada H (2007) Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release 119:236–244

    Article  CAS  PubMed  Google Scholar 

  • Webster R, Elliott V, Park BK, Walker D, Hankin M, Taupin P (2009) PEG and PEG conjugates toxicity: towards an understanding of the toxicity of PEG and its relevance to PEGylated biologicals. PEGylated Protein Drugs: Basic Sci Clin Appl 127–146

    Google Scholar 

  • WF Lai, WT Wong (2020) Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev 58:101021

    Google Scholar 

  • Wojcieowski PW, Brash JL (1993) Fibrinogen and albumin adsorption from human blood plasma and from buffer onto chemically functionalized silica substrates. Colloid Surf B Biointerfaces 1:107–117

    Article  Google Scholar 

  • Woodle MC (1993) Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids 64:249–262

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606

    Article  CAS  PubMed  Google Scholar 

  • Yeh MK et al (1995) Improving the delivery capacity of microparticle system using blends of poly(DL-lactide-co-glycolide) and poly(ethylene glycol). J Control Release 37:1–9

    Article  CAS  Google Scholar 

  • Yeh MK, Davis SS, Coombes AGA (1996) Improving protein delivery from microparticles using blends of poly(DL-lactide-co-glycolide) and poly(ethylene oxide)-poly(propylene oxide) copolymers. Pharm Res 13:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K et al (1975) Preparation of perflurodecalin emulsion, an approach to the red cell substitute. Fed Proc 34:1478–1483

    CAS  PubMed  Google Scholar 

  • Youxin L, Kissel T (1993) Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly(L-lactic acid) or poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks. J Control Release 27:247–257

    Article  Google Scholar 

  • Zilversmit DB, Boyd GA, Brucer M (1952) The effect of particle size on blood clearance and tissue distribution of radioactive gold colloids. J Lab Clin Med 40:255–260

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Das .

Editor information

Editors and Affiliations

Glossary

Adsorption

Adhesion of molecules from a gas, liquid, or dissolved solid to a surface.

Amphiphilic polymers

Polymers possessing both hydrophilic and lipophilic properties.

Efflux pump

A proteinaceous transporter localized in the cytoplasmic membrane cells.

Graft polymer

A branched copolymer with one or more side chains of a homopolymer attached to the backbone of the main chain.

Liposomes

Spherical vesicles having at least one lipid bilayer. Liposomes can be used as a vehicle for administration of bioactive agents.

Macrophages

White blood cells that surround and kill microorganisms, remove dead cells, and stimulate the action of other immune system cells.

Major histocompatibility complex

Proteins that are essential for adaptive immunity.

Phagocytosis

The process by which a cell uses its plasma membrane to engulf a large particle, giving rise to an internal compartment called the phagosome.

Stem cell

A cell that has the ability to develop into many different cell types, from muscle cells to brain cells.

T cells

Lymphocyte immune cells that protect the body from pathogens and responsible for immunity against cancer cells.

van der Waals attractive forces

Weak non-covalent, non-ionic forces between atoms or molecules.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S.K., Das, N.G. (2020). Surface Modification Strategies in Enhancing Systemic Delivery Performance. In: Lai, WF. (eds) Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-54490-4_15

Download citation

Publish with us

Policies and ethics