Skip to main content

Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Abstract

Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA :

amino acid

BCAA:

branched-chain amino acid

BCKAD:

branched chain α-ketoacid dehydrogenease

CP:

crude protein

DM:

dry matter

FHL:

feline hepatic lipidosis

IDO:

indoleamine 2,3-dioxygenase

MAT:

methionine adenosyltranferase

NO:

nitric oxide

SAA:

sulfur-containing amino acid

SAM :

S-adenosylmethionine

References

  • Agnew W, Korman R (2014) Pharmacological appetite stimulation: rational choices in the inappetent cat. J Feline Med Surg 16:749–756

    Article  PubMed  Google Scholar 

  • Ali I, Conrad RJ, Verdin E, Ott M (2018) Lysine acetylation goes global: from epigenetics to metabolism and therapeutics. Chem Rev 118:1216–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson PJ, Rogers QR, Morris JG (2002) Cats require more dietary phenylalanine or tyrosine for melanin deposition in hair than for maximal growth. J Nutr 132:2037–2042

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1975) Adaptation to low protein intakes. Nutr Rev 33:180–182

    Google Scholar 

  • Anthony JC, Reiter AK, Anthony TG, Crozier SJ, Lang CH, MacLean DA, Kimball SR, Jefferson LS (2002) Orally administered leucine enhances protein synthesis in skeletal muscle of diabetic rats in the absence of increases in 4E-BP1 or S6K1 phosphorylation. Diabetes 51:928–936

    Article  CAS  PubMed  Google Scholar 

  • Association of American Feed Control Officials (AAFCO) (2007) Official publication of AAFCO. Champaign, IL

    Google Scholar 

  • Association of American Feed Control Officials (AAFCO) (2014) AAFCO methods for substantiating nutritional adequacy of dog and cat foods. Champaign, IL

    Google Scholar 

  • Backlund B, Zoran DL, Nabity MB, Norby B, Bauer JE (2011) Effects of dietary protein content on renal parameters in normal cats. J Feline Med Surg 13:698–704

    Article  PubMed  Google Scholar 

  • Baker DH, Czarnecki-Maulden GL (1991) Comparative nutrition of cats and dogs. Annu Rev Nutr 11:239–263

    Article  CAS  PubMed  Google Scholar 

  • Balage M, Sinaud S, Prod’Homme M, Dardevet D, Vary TC, Kimball SR, Jefferson LS, Grizard J (2001) Amino acids and insulin are both required to regulate assembly of the eIF4E· eIF4G complex in rat skeletal muscle. Am J Physiol 281:E565–E574

    Google Scholar 

  • Blanchard G, Paragon BM, Milliat F, Lutton C (2002) Dietary L-carnitine supplementation in obese cats alters carnitine metabolism and decreases ketosis during fasting and induced hepatic lipidosis. J Nutr 132:204–210

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Aldini G, Derave WJ (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT (2003) Interorgan amino acid transport and its regulation. J Nutr 133:2068S–2072S

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S

    Article  CAS  PubMed  Google Scholar 

  • Burger IH, Smith PM (1987) Effects of diet on the urine characteristics of the cat. In: Kienzle E, Meyer H, Kienzle E (eds) Nutrition, malnutrition and dietetics in the dog and cat. British Veterinary Association, London, pp 71–73

    Google Scholar 

  • Burns RA, Milner JA, Corbin JE (1981) Arginine: an indispensable amino acid for mature dogs. J Nutr 111:1020–1024

    Article  CAS  PubMed  Google Scholar 

  • Case LP, Daristotle L, Hayek MG, Raasch MF (2011) Canine and feline nutrition. Mosby, St. Louis, Missouri

    Google Scholar 

  • Center SA, Harte J, Watrous D, Reynolds A, Watson TD, Markwell PJ, Millington DS, Wood PA, Yeager AE, Erb HN (2000) The clinical and metabolic effects of rapid weight loss in obese pet cats and the influence of supplemental oral L-carnitine. J Vet Intern Med 14:598–608

    Article  CAS  PubMed  Google Scholar 

  • Cianciaruso B, Jones MR, Kopple JD (1981) Histidine, an essential amino acid for adult dogs. J Nutr 111:1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Cortamira NO, Seve B, Lebreton Y, Gainier P (1991) Effect of dietary tryptophan on muscle, liver and whole-body protein synthesis in weaned piglets: relationship to plasma insulin. Br J Nut 66:423–435

    Article  CAS  Google Scholar 

  • D’Mello JP (2003) Amino acids as multifunctional molecules. In: D’Mello JP (ed) Amino acids in animal nutrition. CAB International, Wallingford, pp 1–14

    Chapter  Google Scholar 

  • Da Graça PG, Fragoso S (2010) L-tryptophan supplementation and its effect on multi-housed cats and working dogs. Vet Prac 4:19

    Google Scholar 

  • Davis TA, Nguyen HV, Garcia-Bravo R, Fiorotto ML, Jackson EM, Lewis DS, Lee DR, Reeds PJ (1994) Amino acid composition of human milk is not unique. J Nutr 124:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Dukes A, Davis C, El Refaey M, Upadhyay S, Mork S, Arounleut P, Johnson MH, Hill WD, Isales CM, Hamrick MW (2015) The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro. Nutrition 31:1018–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisert R (2011) Hypercarnivory and the brain: protein requirements of cats reconsidered. J Comp Physiol B 181:1–17

    Article  CAS  PubMed  Google Scholar 

  • Garlick PJ, Grant I (1988) Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Effect of branched-chain amino acids. Biochem J 254:579–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AS, Ramsey JJ, Villaverde C, Asami DK, Wei A, Fascetti AJ (2008) Cats are able to adapt protein oxidation to protein intake provided their requirement for dietary protein is met. J Nutr 138:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Hall JA, Jackson MI, Vondran JC, Vanchina MA, Jewell DE (2018) Comparison of circulating metabolite concentrations in dogs and cats when allowed to freely choose macronutrient intake. Biology 7:bio036228

    Google Scholar 

  • Hand MS, Thatcher CD, Remillard RL, Roudebush P, Novtony BJ (2010) Small animal clinic nutrition, 5th edn. Mark Morris Institute, Topeka

    Google Scholar 

  • Harris RA, Joshi M, Jeoung NH (2004) Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 313:391–396

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’kane RL, Simpson IA, Vina JR (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226S

    Article  CAS  PubMed  Google Scholar 

  • He WL, Furukawa K, Leyva-Jimenez H, Bailey CA, Wu G (2018) Oxidation of energy substrates by enterocytes of 0- to 42-day-old chickens. Poult Sci 97(E-Suppl 1):3

    Google Scholar 

  • Hendriks WH (1996) Protein Metabolism in the Adult Domestic Cat (Felis catus). PhD Thesis, Massey University, Palmerston North, New Zealand

    Google Scholar 

  • Hendriks WH, Tarttelin MF, Moughan PJ (1995) Twenty-four hour feline excretion patterns in entire and castrated cats. Physiol Behav 58:467–469

    Article  CAS  PubMed  Google Scholar 

  • Hendriks WH, Vather R, Rutherfurd SM, Weidgraaf K, Rutherfurd-Markwick KJ (2004) Urinary isovalthine excretion in adult cats is not gender dependent or increased by oral leucine supplementation. J Nutr 134:2114S–2116S

    Article  CAS  PubMed  Google Scholar 

  • Herring CM, Bazer FW, Wu G (2020) Amino acid nutrition for optimum growth, development, reproduction, and health of zoo animals. Adv Exp Med Biol 1285:233–253

    Google Scholar 

  • Holliday JA, Steppan SJ (2004) Evolution of hypercarnivory: the effect of specialization on morphological and taxonomic diversity. Paleobiology 30:108–128

    Article  Google Scholar 

  • Hoppe A, Denneberg T, Jeppsson JO, Kågedal B (1993) Urinary excretion of amino acids in normal and cystinuric dogs. Br Vet J 149:253–268

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wu G (2018a) Nutritionally essential amino acids. Adv Nutr 9:849–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wu G (2018b) L-glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Hu SD, Li XY, He WL, Wu G (2020) Amino acid metabolism in the liver: nutritional and physiological significance. Adv Exp Med Biol 1265:21–37

    Google Scholar 

  • Jia SC, Li XY, Zheng SX, Wu G (2017) Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49:2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Jiao N, Wu ZL, Ji Y, Wang B, Dai ZL, Wu G (2015) L-glutamate enhances barrier and anti-oxidative functions in intestinal porcine epithelial cells. J Nutr 145:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Jobgen W, Fu WJ, Gao H, Li P, Meininger CJ, Smith SB, Spencer TE, Wu G (2009) High fat feeding and dietary L-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 37:187–198

    Article  CAS  PubMed  Google Scholar 

  • Jungnickel KE, Parker JL, Newstead S (2018) Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat Commun 9:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kantorosinski S, Morrison WB (1988) A review of feline nutrition. Iowa State Univ Vet 50:95–106

    Google Scholar 

  • Kato M, Miyaji K, Ohtani N, Ohta M (2012) Effects of prescription diet on dealing with stressful situations and performance of anxiety-related behaviors in privately owned anxious dogs. J Vet Behav 7:21–26

    Article  Google Scholar 

  • Knopf K, Sturman JA, Armstrong M, Hayes KC (1978) Taurine: an essential nutrient for the cat. J Nutr 108:773–778

    Article  CAS  PubMed  Google Scholar 

  • Kodama H, Yamamoto M, Sasaki K (1980) Isotachophoretic analysis of some sulfur-containing amino acids in human urine. J Chromatogr B 183:226–228

    Article  CAS  Google Scholar 

  • Kong XF, Tan BE, Yin YL, Gao HJ, Li XL, Jaeger LA, Bazer FW, Wu G (2012) L-arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem 23:1178–1118

    Article  CAS  PubMed  Google Scholar 

  • Kuwaki T, Ohmori S, Mizuhara S (1963) Biosynthesis of isovalthine precursor in liver homogenates. Biochim Biophys Acta 78:553–555

    Article  CAS  PubMed  Google Scholar 

  • Laflamme DP (2008) Pet food safety: dietary protein. Top Companion Anim Med 23:154–157

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  CAS  PubMed  Google Scholar 

  • Li P, Knabe DA, Kim SW, Lynch CJ, Hutson SM, Wu G (2009) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Zheng SX, Wu G (2020a) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–6

    Google Scholar 

  • Li XY, Zheng SX, Wu G (2020b) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2020c) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–197

    Google Scholar 

  • Li XY, Zheng SX, Wu G (2020d) Amino acid metabolism in the kidneys: nutritional and physiological significance. Adv Exp Med Biol 1265:71–95

    Google Scholar 

  • Liang HW, Dai ZL, Ma XS, Liu N, Ji Y, Chen JQ, Zhang YC, Yang Y, Li J, Wu ZL, Wu G (2018) Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front Microbiol 9:1736

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang HW, Dai ZL, Kou J, Sun KJ, Chen JQ, Yang Y, Wu G, Wu ZL (2019) Dietary l-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota. Int J Mol Sci 20:20

    Article  CAS  Google Scholar 

  • Lin FD, Smith TK, Bayley HS (1988) A role for tryptophan in regulation of protein synthesis in porcine muscle. J Nutr 118:445–449

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Han M, Li D, Hu S, Gilbreath KR, Bazer FW, Wu G (2017) L-arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids 49:957–964

    Article  CAS  PubMed  Google Scholar 

  • Ma QQ, Hu SD, Bannai M, Wu G (2018) L-arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis. Amino Acids 50:621–628

    Article  CAS  PubMed  Google Scholar 

  • MacDonald ML, Rogers QR, Morris JG (1984) Nutrition of the domestic cat, a mammalian carnivore. Annu Rev Nutr 4:521–562

    Article  CAS  PubMed  Google Scholar 

  • Manjarín R, Columbus DA, Solis J, Hernandez-García AD, Suryawan A, Nguyen HV, McGuckin MM, Jimenez RT, Fiorotto ML, Davis TA (2018) Short- and long-term effects of leucine and branched-chain amino acid supplementation of a protein- and energy-reduced diet on muscle protein metabolism in neonatal pigs. Amino Acids 50:943–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markwell PJ, Earle KE (1995) Taurine: an essential nutrient for the cat. A brief review of the biochemistry of its requirement and the clinical consequences of deficiency. Nutr Res 15:53–58

    Article  CAS  Google Scholar 

  • Miyazaki M, Yamashita T, Taira H, Suzuki A (2008) The biological function of cauxin, a major urinary protein of the domestic cat. In: Hurst JL, Beynon RJ, Roberts SC, Wyatt TD (eds) Chemical signals in vertebrates, vol 11. Springer, New York, pp 51–60

    Google Scholar 

  • Mizuhara S, Oomori S (1961) A new sulfur-containing amino acid. Arch Biochem Biophys 92:53–57

    Article  CAS  PubMed  Google Scholar 

  • Morris JG (1985) Nutritional and metabolic responses to arginine deficiency in carnivores. J Nutr 115:524–531

    Article  CAS  PubMed  Google Scholar 

  • Morris JG (2002) Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr Res Rev 15:153–168

    Article  CAS  PubMed  Google Scholar 

  • Morris JH, Rogers QR (1992) The metabolic basis for the taurine requirement of cats. Adv Exp Med Biol 315:33–44

    Article  CAS  PubMed  Google Scholar 

  • Morris JG, Rogers QR, Winterrowd DL, Kamikawa EM (1979) The utilization of ornithine and citrulline by the growing kitten. J Nutr 109:724–729

    Article  CAS  PubMed  Google Scholar 

  • Morris JG, Rogers QR, Pacioretty LM (1990) Taurine: an essential nutrient for cats. J Small Anim Pract 31:502–509

    Article  Google Scholar 

  • Morrison WB (2002) Cancer in dogs and cats: medical and surgical management. Teton NewMedia, Jackson

    Google Scholar 

  • Nagasawa T, Kido T, Yoshizawa F, Ito Y, Nishizawa N (2002) Rapid suppression of protein degradation in skeletal muscle after oral feeding of leucine in rats. J Nutr Biochem 13:121–127

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC) (1986) Nutrient requirements of dogs and cats. National Academies Press, Washington, DC

    Google Scholar 

  • National Research Council (NRC) (2006) Nutrient requirements of dogs and cats. National Academies Press, Washington, DC

    Google Scholar 

  • Oberbauer AM, Larsen JA (2020) Amino acids in dog nutrition and health. Adv Exp Med Biol 1285:199–216

    Google Scholar 

  • Oomori S, Mizuhara S (1962) Structure of a new sulfur-containing amino acid. Arch Bichem Biophys 96:179–185

    Article  CAS  Google Scholar 

  • Oxenkrug GF (2010) Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci 47:56–63

    PubMed  PubMed Central  Google Scholar 

  • Radford A (2004) Metabolic highways of neurospora crassa revisited. Adv Genet 52:165–208

    Article  CAS  PubMed  Google Scholar 

  • Rogers QR, Morris JG (1979) Essentiality of amino acids for the growing kitten. J Nutr 109:718–723

    Article  CAS  PubMed  Google Scholar 

  • Rogers QR, Phang JM (1985) Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. J Nutr 115:146–150

    Article  CAS  PubMed  Google Scholar 

  • Rogers QR, Morris JG, Freeland RA (1977) Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme 22:348–356

    Article  CAS  PubMed  Google Scholar 

  • Rogers QR, Taylor TP, Morris JG (1998) Optimizing dietary amino acid patterns at various levels of crude protein for cats. J Nutr 128:2577S–2580S

    Article  CAS  PubMed  Google Scholar 

  • Rutherfurd KJ, Rutherfurd SM, Moughan PJ, Hendriks WH (2002) Isolation and characterization of a felinine-containing peptide from the blood of the domestic cat (felis catus). J Biol Chem 277:114–119

    Article  CAS  PubMed  Google Scholar 

  • Rutherfurd-Markwick KJ, Rogers QR, Hendriks WH (2005) Mammalian isovalthine metabolism. J Anim Physiol Anim Nutr (Berl) 89:1–10

    Article  CAS  Google Scholar 

  • Saxton RA, Chantranupong L, Knockenhauer KE, Schwartz TU, Sabatini DM (2016) Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536:229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schermerhorn T (2013) Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front Endocrinol 4:188

    Article  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433

    Article  CAS  PubMed  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10

    Article  CAS  PubMed  Google Scholar 

  • Sturman JA, Hayes KC (1980) The biology of taurine in nutrition and development. Adv Nutr Res 3:231–299

    Article  CAS  Google Scholar 

  • Sturman JA, Lu P (1997) Role of feline maternal taurine nutrition in fetal cerebellar development: an immunohistochemical study. Amino Acids 13:369–377

    Article  CAS  Google Scholar 

  • Sun KJ, Wu ZL, Ji Y, Wu G (2016) Glycine regulates protein turnover by activating Akt/mTOR and inhibiting expression of genes involved in protein degradation in C2C12 myoblasts. J Nutr 146:2461–2467

    Article  CAS  PubMed  Google Scholar 

  • Teeter RG, Baker DH, Corbin JE (1978) Methionine and cystine requirements of the cat. J Nutr 108:291–295

    Article  CAS  PubMed  Google Scholar 

  • Verbrugghe A, Bakovic MJN (2013) Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis. Nutrients 5:2811–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbrugghe A, Hesta M, Daminet S, Janssens GP (2012) Nutritional modulation of insulin resistance in the true carnivorous cat: a review. Crit Rev Food Sci Nutr 52:172–182

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Wu ZL, Li DF, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17:282–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WW, Dai ZL, Wu ZL, Lin G, Jia SC, Hu SD, Dahanayaka S, Wu G (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ji Y, Wu G, Sun KJ, Sun YL, Li W, Wang B, He BB, Zhang Q, Dai ZL, Wu ZL (2015) L-tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. J Nutr 145:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Wester TJ, Weidgraaf K, Hekman M, Ugarte CE, Forsyth SF, Tavendale MH (2015) Amino acid oxidation increases with dietary protein content in adult neutered male cats as measured using [1-13C]leucine and [15N2]urea. J Nutr 145:2471–2478

    Article  CAS  PubMed  Google Scholar 

  • Williams JM, Morris J, Rogers QR (1987) Phenylalanine requirement of kittens and the sparing effect of tyrosine. J Nutr 117:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Wills JM, Simpson KW (1994) The Waltham book of clinical nutrition of the dog and cat. Pergamon Press, Oxford

    Google Scholar 

  • Wortinger A (2010) Cats: obligate carnivore (Proceedings). CVC in Kansas City Proceedings, August 1, 2010. Kansas City, MO

    Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G (2020a) Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 471–492

    Chapter  Google Scholar 

  • Wu G (2020b) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Meininger CJ (2009) Nitric oxide and vascular insulin resistance. Biofactors 35:21–27

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 94:2603–2613

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Yin YL, Chu WY, Liu ZQ, Deng D, Li TJ, Huang RL, Zhang JS, Tan BE, Wang W, Wu G (2008) Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J Nutr 138:867–872

    Article  CAS  PubMed  Google Scholar 

  • Young VR, Ajami AM (2001) Glutamine: the emperor or his clothes? J Nutr 131:2449S–2459S

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Rogers RQ, Morris JG (2001) Effect of low levels of dietary tyrosine on the hair colour of cats. J Small Anim Pract 42:176–180

    Article  CAS  PubMed  Google Scholar 

  • Zhang JM, He WL, Yi D, Zhao D, Song Z, Hou YQ, Wu G (2019) Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 51:717–726

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Li HJS (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoran DL (2002) The carnivore connection to nutrition in cats. J Am Vet Med Assoc 221:1559–1567

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our laboratories was supported by funds from Jilin Agricultural University (to G. Che) and Texas A&M AgriLife Research H-8200 (to G. Wu). We thanks our students and colleagues for helpful discussions.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Che, D., Nyingwa, P.S., Ralinala, K.M., Maswanganye, G.M.T., Wu, G. (2021). Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_11

Download citation

Publish with us

Policies and ethics