Skip to main content

Amino Acids in Dog Nutrition and Health

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1285))

Abstract

The dog has assumed a prominent role in human society. Associated with that status, diet choices for companion dogs have begun to reflect the personal preferences of the owners, with greater emphasis on specialty diets such as organic, vegan/vegetarian, and omission or inclusion of specific ingredients. Despite consumer preferences and many marketing strategies employed, the diets must ensure nutritional adequacy for the dog; if not, health becomes compromised, sometimes severely. The most frequent consideration of consumers and dog food manufacturers is protein source and concentration with a growing emphasis on amino acid composition and bioavailability. Amino acids in general play diverse and critical roles in the dog, with specific amino acids being essential. This review covers what is known regarding amino acids in dog nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AAFCO:

Association of American Feed Control Officials

DCM:

dilated cardiomyopathy

mTOR:

mechanistic target of rapamycin

NRC:

National Research Council

SND:

Superficial necrolytic dermatitis

References

  • Abe H, Yoshikawa N, Sarower MG, Okada S (2005) Physiological function and metabolism of free D-alanine in aquatic animals. J Biol Pharm Bulletin 28:1571–1577

    Article  CAS  Google Scholar 

  • Allison JB, Anderson JA, Seeley RD (1947) Some effects of methionine on the utilization of nitrogen in the adult dog. J Nutr 33:361–370

    Article  CAS  PubMed  Google Scholar 

  • Anderson GH (1979) Control of protein and energy intake: role of plasma amino acids and brain neurotransmitters. Can J Physiol Pharmacol 57:1043–1057

    Article  CAS  PubMed  Google Scholar 

  • Anderson PJ, Rogers QR, Morris JG (2002) Cats require more dietary phenylalanine or tyrosine for melanin deposition in hair than for maximal growth. J Nutr 132:2037–2042

    Article  CAS  PubMed  Google Scholar 

  • Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, Liberg O, Arnemo JM, Hedhammar Å, Lindblad-Toh K (2013) The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495:360–364

    Google Scholar 

  • Bachmanov AA, Bosak NP, Glendinning JI, Inoue M, Li X, Manita S, McCaughey SA, Murata Y, Reed DR, Tordoff MG (2016) Genetics of amino acid taste and appetite. Adv Nutr 7:806S–822S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backus R, Morris J, Kim S, O’Donnell J, Hickman M, Kirk C, Cooke J, Rogers Q (1998) Dietary taurine needs of cats vary with dietary protein quality and concentration. Vet Clin Nutr 5(2):18–22

    Google Scholar 

  • Baker DH (2005) Comparative nutrition and metabolism: explication of open questions with emphasis on protein and amino acids. Proc Natl Acad Sci U S A 102:17897–17902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednar G, Murray S, Patil A, Flickinger E, Merchen N, Fahey G Jr (2000) Selected animal and plant protein sources affect nutrient digestibility and fecal characteristics of ileally cannulated dogs. Arch Anim Nutr 53:127–140

    CAS  Google Scholar 

  • Blaza SE, Burger IH, Holme DW, Kendall PT (1982) Sulfur-containing amino acid requirements of growing dogs. J Nutr 112:2033–2042

    CAS  PubMed  Google Scholar 

  • Bosch G, Beerda B, Hendriks WH, van der Poel AF, Verstegen MW (2007) Impact of nutrition on canine behaviour: current status and possible mechanisms. Nutr Res Rev 20:180–194

    Article  CAS  PubMed  Google Scholar 

  • Bosch G, Hagen-Plantinga EA, Hendriks WH (2015) Dietary nutrient profiles of wild wolves: insights for optimal dog nutrition? Br J Nutr 113(Suppl):S40–S54

    Article  CAS  PubMed  Google Scholar 

  • Bressani R (1963) Effect of amino acid imbalance on nitrogen retention: II Interrelationships between methionine, valine, isoleucine and threonine as supplements to corn protein for dogs. J Nutr 79:389–394

    Article  CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136:207S–211S

    Article  CAS  PubMed  Google Scholar 

  • Buffington C (1989) Lack of effect of age on digestibility of protein, fat, and dry matter in Beagle dogs. In: Burger I, Rivers J (eds) Nutrition of the dog and cat, 1st edn. Cambridge University Press, New York

    Google Scholar 

  • Burkhalter T, Merchen N, Bauer L, Murray S, Patil A, Brent J Jr, Fahey G Jr (2001) The ratio of insoluble to soluble fiber components in soybean hulls affects ileal and total-tract nutrient digestibilities and fecal characteristics of dogs. J Nutr 131:1978–1985

    Article  CAS  PubMed  Google Scholar 

  • Burns RA, Milner J (1982) Threonine, tryptophan and histidine requirements of immature beagle dogs. J Nutr 112:447–452

    Article  CAS  PubMed  Google Scholar 

  • Burns R, Milner J, Corbin J (1981) Arginine: An indispensable amino acid for mature dogs. J Nutr 111:1020–1024

    Article  CAS  PubMed  Google Scholar 

  • Burrows C, Kronfeld D, Banta C, Merritt AM (1982) Effects of fiber on digestibility and transit time in dogs. J Nutr 112:1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Butterwick RF, Markwell PJ (1997) Effect of amount and type of dietary fiber on food intake in energy-restricted dogs. Am J Vet Res 58:272–276

    CAS  PubMed  Google Scholar 

  • Case LP, Daristotle L, Hayek MG, Raasch MF (2010) Canine and feline nutrition-E-book: a resource for companion animal professionals. Elsevier Health Sciences, Maryland Heights, Missouri

    Google Scholar 

  • Chan D, Rozanski E, Freeman L (2009) Relationship among plasma amino acids, C-reactive protein, illness severity, and outcome in critically ill dogs. J Vet Intern Med 23:559–563

    Article  CAS  PubMed  Google Scholar 

  • Chauncey HH, Henrigues BL, Tanzer JM (1963) Comparative enzyme activity of saliva from the sheep, hog, dog, rabbit, rat, and human. Arch Oral Biol 8:615–627

    Article  CAS  PubMed  Google Scholar 

  • Che DS, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G (2020) Amino acids in the nutrition, metabolism, and health of domestic cats. Adv Exp Med Biol 1285:217–231

    Google Scholar 

  • Cheftel J (1976) Chemical and nutritional modification of food proteins due to processing and storage. In: Whitaker J, Tannenbaum S (eds) Food proteins. Avi Publishing Co., Inc, Westport, pp 401–483

    Google Scholar 

  • Cianciaruso B, Jones MR, Kopple JD (1981) Histidine, an essential amino acid for adult dogs. J Nutr 111:1074–1084

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Aguilar MD, Tecles F, Martinez-Subiela S, Escribano D, Bernal LJ, Ceron JJ (2017) Detection and measurement of alpha-amylase in canine saliva and changes after an experimentally induced sympathetic activation. BMC Vet Res 13:266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuscó A, Belanger JM, Gershony L, Islas-Trejo A, Levy K, Medrano JF, Sánchez A, Oberbauer AM, Francino O (2017) Individual signatures and environmental factors shape skin microbiota in healthy dogs. Microbiome 5(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  • Czarnecki GL, Baker DH (1982) Utilization of D-and L-tryptophan by the growing dog. J Anim Sci 55:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Czarnecki GL, Hirakawa DA, Baker DH (1985) Antagonism of arginine by excess dietary lysine in the growing dog. J Nutr 115:743–752

    Article  CAS  PubMed  Google Scholar 

  • Czuba B, Vessey DA (1981) Identification of a unique mammalian species of cholyl-CoA: amino acid N-acyltransferase. Biochim Biophys Acta 665:612–614

    Article  CAS  PubMed  Google Scholar 

  • Dai Z-L, Wu G, Zhu W-Y (2011) Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front Biosci 16:1768–1786

    Article  CAS  Google Scholar 

  • de Sousa-Pereira P, Cova M, Abrantes J, Ferreira R, Trindade F, Barros A, Gomes P, Colaco B, Amado F, Esteves PJ, Vitorino R (2015) Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics 15:1598–1607

    Article  PubMed  CAS  Google Scholar 

  • Deady JE, Anderson B, O'Donnell JA III, Morris JG, Rogers QR (1981) Effects of level of dietary glutamic acid and thiamin on food intake, weight gain, plasma amino acids, and thiamin status of growing kittens. J Nutr 111:1568–1579

    Article  CAS  PubMed  Google Scholar 

  • Dearman RJ, Kimber I (2009) Animal models of protein allergenicity: potential benefits, pitfalls and challenges. Clin Exp Allergy 39:458–468

    Article  CAS  PubMed  Google Scholar 

  • Delaney SJ, Hill AS, Backus RC, Czarnecki-Maulden GL, Rogers QR (2001) Dietary crude protein concentration does not affect the leucine requirement of growing dogs. J Anim Physiol Anim Nutr 85:88–100

    Article  CAS  Google Scholar 

  • Delaney S, Kass P, Rogers Q, Fascetti A (2003) Plasma and whole blood taurine in normal dogs of varying size fed commercially prepared food. J Anim Nutr Anim Physiol 87:236–244

    Article  CAS  Google Scholar 

  • DeNapoli JS, Dodman NH, Shuster L, Rand WM, Gross KL (2000) Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs. J Am Vet Med Assoc 217:504–508

    Article  CAS  PubMed  Google Scholar 

  • Deng P, Utterback P, Parsons C, Hancock L, Swanson K (2016) Chemical composition, true nutrient digestibility, and true metabolizable energy of novel pet food protein sources using the precision-fed cecectomized rooster assay. J Anim Sci 94:3335–3342

    Article  CAS  PubMed  Google Scholar 

  • Dimski DS (1994) Ammonia metabolism and the urea cycle: function and clinical implications. J Vet Intern Med 8:73–78

    Article  CAS  PubMed  Google Scholar 

  • D'Mello JF (2003) Amino acids in animal nutrition, 2nd edn. CABI Publishing, Surrey

    Book  Google Scholar 

  • Dos Reis JS, Zangeronimo MG, Ogoshi RC, Franca J, Costa AC, Almeida TN, Dos Santos JP, Pires CP, Chizzotti AF, Leite CA, Saad FM (2016) Inclusion of Yucca schidigera extract in diets with different protein levels for dogs. Anim Sci J 87:1019–1027

    Article  CAS  PubMed  Google Scholar 

  • Dust JM, Grieshop C, Parsons C, Karr-Lilienthal L, Schasteen C, Quigley J III, Merchen N, Fahey G Jr (2005) Chemical composition, protein quality, palatability, and digestibility of alternative protein sources for dogs. J Anim Sci 83:2414–2422

    Google Scholar 

  • Fafournoux P, Bruhat A, Jousse C (2000) Amino acid regulation of gene expression. Biochem J 351:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fascetti AJ, Reed JR, Rogers QR, Backus RC (2003) Taurine deficiency in dogs with dilated cardiomyopathy: 12 cases (1997–2001). J Am Vet Med Assoc 223:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Flickinger E, Schreijen E, Patil A, Hussein H, Grieshop C, Merchen N, Fahey G Jr (2003) Nutrient digestibilities, microbial populations, and protein catabolites as affected by fructan supplementation of dog diets. J Anim Sci 81:2008–2018

    Article  CAS  PubMed  Google Scholar 

  • Fossati LA, Larsen JA, Villaverde C, Fascetti AJ (2019) Determination of mammalian DNA in commercial canine diets with uncommon and limited ingredients. Vet Med Sci 5:30–38

    Article  CAS  PubMed  Google Scholar 

  • Fretwell LK, McCune S, Fone JV, DJJTJon Y (2006) The effect of supplementation with branched-chain amino acids on cognitive function in active dogs. J Nutr 136:2069S–2071S

    Article  CAS  PubMed  Google Scholar 

  • Frexes-Steed M, Lacy DB, Collins J, Abumrad NN (1992) Role of leucine and other amino acids in regulating protein metabolism in vivo. Am J Physiol 262:E925–E935

    Google Scholar 

  • Friedman M, Levin CE (2012) Nutritional and medicinal aspects of D-amino acids. Amino Acids 42:1553–1582

    Article  CAS  PubMed  Google Scholar 

  • Fujii N (2002) D-amino acids in living higher organisms. Origins Life Evol Biosphere 32:103–127

    Article  CAS  Google Scholar 

  • Fulks RM, Li JB, Goldberg AL (1975) Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J Biol Chem 250:290–298

    Article  CAS  PubMed  Google Scholar 

  • Genchi G (2017) An overview on D-amino acids. Amino Acids 49:1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Glasgow A, Cave N, Marks S, Pedersen N (2002) Role of diet in the health of the feline intestinal tract and in inflammatory bowel disease. Cat Fanciers’ Almanac 19:78–80

    Google Scholar 

  • Haines RJ, Pendleton LC, Eichler DC (2010) Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol 2:8–23

    PubMed Central  Google Scholar 

  • Hannah S, Son H, Kealy R, Owens S (1995) Digestibility of diet in small and large breed dogs. Vet Clin Nutr 2:145

    Google Scholar 

  • Hargrove DM, Morris JG, Rogers QR (1994) Kittens choose a high leucine diet even when isoleucine and valine are the limiting amino acids. J Nutr 124:689–693

    Article  CAS  PubMed  Google Scholar 

  • Hendriks WH, Cottam YH, Morel PCH, Thomas DV (2004) Source of the variation in meat and bone meal nutritional quality. Asian-Australas J Anim Sci 17:94–101

    Article  CAS  Google Scholar 

  • Hendriks WH, Bakker EJ, Bosch G (2015) Protein and amino acid bioavailability estimates for canine foods. J Anim Sci 93:4788–4795

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa DA, Baker DH (1985) Sulfur amino acid nutrition of the growing puppy: determination of dietary requirements for methionine and cystine. Nutr Res 5:631–642

    Article  CAS  Google Scholar 

  • Holt LE Jr, Snyderman SE, Norton PM, Roitman E, Finch J (1963) The plasma aminogram in kwashiorkor. Lancet 2:1343–1348

    Article  Google Scholar 

  • Hooda S, Minamoto Y, Suchodolski JS, Swanson KS (2012) Current state of knowledge: the canine gastrointestinal microbiome. Anim Health Res Rev 13:78–88

    Article  PubMed  Google Scholar 

  • Hou Y, Wu GJA (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Google Scholar 

  • Humbert B, Bleis P, Martin L, Dumon H, Darmaun D, Nguyen P (2001) Effects of dietary protein restriction and amino acids deficiency on protein metabolism in dogs. J Anim Physiol Anim Nutr 85:255–262

    Article  CAS  Google Scholar 

  • Hurrell RF, Finot PA, Ford JE (1983) Storage of milk powders under adverse conditions. I. Losses of lysine and of other essential amino acids as determined by chemical and microbiological methods. Br J Nutr 49:343–354

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Flickinger EA, Fahey GC Jr (1999) Petfood applications of inulin and oligofructose. J Nutr 129:1454S–1456S

    Article  CAS  PubMed  Google Scholar 

  • Jackson JR, Laflamme DP, Owens SF (1997) Effects of dietary fiber content on satiety in dogs. Vet Clin Nutr 4:130–134

    Google Scholar 

  • Jewell DE, Toll PW (1999) The effect of carnitine supplementation on body composition of obese-prone cats. Hills pet nutrition obesity: weight management in cats and dogs. Hill’s Pet Nutrition, Inc., Topeka

    Google Scholar 

  • Johnson M, Parsons C, Fahey G, Merchen N, Aldrich C (1998) Effects of species raw material source, ash content, and processing temperature on amino acid digestibility of animal by-product meals by cecectomized roosters and ileally cannulated dogs. J Anim Sci 76:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Jousse C, Averous J, Bruhat A, Carraro V, Mordier S, Fafournoux P (2004) Amino acids as regulators of gene expression: molecular mechanisms. Biochem Biophys Res Commun 313:447–452

    Article  CAS  PubMed  Google Scholar 

  • Kanakubo K, Fascetti AJ, Larsen JA (2015) Assessment of protein and amino acid concentrations and labeling adequacy of commercial vegetarian diets formulated for dogs and cats. J Am Vet Med Assoc 247:385–392

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JL, Stern JA, Fascetti AJ, Larsen JA, Skolnik H, Peddle GD, Kienle RD, Waxman A, Cocchiaro M, Gunther-Harrington CT, Klose T (2018) Taurine deficiency and dilated cardiomyopathy in golden retrievers fed commercial diets. PLoS ONE 13:e0209112

    Google Scholar 

  • Kathrani A, Allenspach K, Fascetti AJ, Larsen JA, Hall EJ (2018) Alterations in serum amino acid concentrations in dogs with protein-losing enteropathy. J Vet Intern Med 32:1026–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendall PT, Holme DW, Smith PM (1982) Comparative evaluation of net digestive and absorptive efficiency in dogs and cats fed a variety of contrasting diet types. J Small Anim Pract 23:577–587

    Article  Google Scholar 

  • Kienzle E, Meyer M, Lohrie H (1985) Effect of differing protein/energy ratios in carbohydrate-free diets for breeding bitches on development and vitality of puppies and milk composition. Adv Anim Physiol Anim Nutr 16:73–99

    Google Scholar 

  • Kimball SR, Jefferson LS (2006) Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr 136:227S–231S

    Article  CAS  PubMed  Google Scholar 

  • Kumcu A, Woolverton AE (2015) Feeding fido: changing consumer food preferences bring pets to the table. J Food Products Marketing 21:213–230

    Article  Google Scholar 

  • Laflamme DP (2005) Nutrition for aging cats and dogs and the importance of body condition. Vet Clin North Am Small Anim Pract 35:713–742

    Article  PubMed  Google Scholar 

  • Laflamme DP (2012) Nutritional care for aging cats and dogs. Vet Clin North Am Small Anim Pract 42:769–791

    Article  CAS  PubMed  Google Scholar 

  • Lajolo FM, Genovese MI (2002) Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem 50:6592–6598

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung P, Rogers Q (1987) The effect of amino acids and protein on dietary choice. In: Kawamura Y, Kare M (eds) Umami: a basic taste. pp 565–610

    Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Li W, Sun K, Ji Y, Wu Z, Wang W, Dai Z, Wu G (2016) Glycine regulates expression and distribution of Claudin-7 and ZO-3 Proteins in intestinal porcine epithelial cells. J Nutr 146:964–969

    Article  CAS  PubMed  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang X, Hou Y, Yin Y, Qiu Y, Wu G, Hu CA (2017a) Roles of amino acids in preventing and treating intestinal diseases: recent studies with pig models. Amino Acids 49:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang X, Hu CA (2017b) Therapeutic potential of amino acids in inflammatory bowel disease. Nutrients 9(9):920

    Article  PubMed Central  CAS  Google Scholar 

  • Lourenco R, Camilo MJNH (2002) Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp 17:262–270

    CAS  PubMed  Google Scholar 

  • Lowe JA, Kershaw SJ, Taylor AJ, Linforth RS (1997) The effect of Yucca schidigera extract on canine and feline faecal volatiles occurring concurrently with faecal aroma amelioration. Res Vet Sci 63:67–71

    Article  CAS  PubMed  Google Scholar 

  • Man EH, Bada JL (1987) Dietary D-amino acids. Annu Rev Nutr 7:209–225

    Article  CAS  PubMed  Google Scholar 

  • Mansilla WD, Gorman A, Fortener L, Shoveller AK (2018) Dietary phenylalanine requirements are similar in small, medium, and large breed adult dogs using the direct amino acid oxidation technique. J Anim Sci 96:3112–3120

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall H, Chang K, Miller K, Satterlee L (1982) Sulfur amino acid stability: effects of processing on legume proteins. J Food Sci 47:1170–1174

    Article  CAS  Google Scholar 

  • McCusker S, Buff PR, Yu Z, Fascetti AJ (2014) Amino acid content of selected plant, algae and insect species: a search for alternative protein sources for use in pet foods. J Nutr Sci 3:e39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer H, Schunemann C, Hamburg, Parey BVP (1989) Rationsgestaltung und praecaecale bzw. Postileale Verdaulichkeit der organischen Substanz. In: Meyer H (ed.) Beitrage zur Verdauungsphysiologie des hundes. pp. 14–23

    Google Scholar 

  • Middleton RP, Lacroix S, Scott-Boyer M-P, Dordevic N, Kennedy AD, Slusky AR, Carayol J, Petzinger-Germain C, Beloshapka A, Kaput J (2017) Metabolic differences between dogs of different body sizes. J Nutr Metab 2017:11

    Article  CAS  Google Scholar 

  • Milner J (1979a) Assessment of indispensable and dispensable amino acids for the immature dog. J Nutr 109:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Milner J (1979b) Assessment of the essentiality of methionine, threonine, tryptophan, histidine and isoleucine in immature dogs. J Nutr 109:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Milner J (1981) Lysine requirements of the immature dog. J Nutr 111:40–45

    Article  CAS  PubMed  Google Scholar 

  • Milner J, Prior R, Visek W (1975) Arginine deficiency and orotic aciduria in mammals. Proc Soc Exp Biol 150:282–288

    Article  CAS  PubMed  Google Scholar 

  • Moreira I, Martins J, Ramos R, Fernandes P, Ramos M (2013) Understanding the importance of the aromatic amino-acid residues as hot-spots. Biochim Biophys Acta 1834:404–414

    Article  CAS  PubMed  Google Scholar 

  • Morgan AF, Hunt CN, Arnrich L, Lewis E (1951) Evaluation of five partially purified proteins by nitrogen balance in mature dogs, including a study of the antitryptic activity of egg white. J Nutr 43:63–75

    Article  CAS  PubMed  Google Scholar 

  • Morris JG, Rogers QR (1978) Ammonia intoxication in the near-adult cat as a result of a dietary deficiency of arginine. Science 199:431–432

    Google Scholar 

  • Morris JG, Rogers QR (1994) Assessment of the nutritional adequacy of pet foods through the life cycle. J Nutr 124(12 Suppl):2520s–2534s

    Article  CAS  PubMed  Google Scholar 

  • Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JBJNiCP (2017) Acquired amino acid deficiencies: a focus on arginine and glutamine. Nutr Clin Pract 32:30S–47S

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (2006) Nutrient requirements of dogs and cats. National Academies Press, Washington DC

    Google Scholar 

  • Neirinck K, Istasse L, Gabriel A, Van Eenaeme C, Bienfait J-M (1991) Amino acid composition and digestibility of four protein sources for dogs. J Nutr 121(Suppl 11):S64–S65

    Google Scholar 

  • Nery J, Goudez R, Biourge V, Tournier C, Leray V, Martin L, Thorin C, Nguyen P, Dumon H (2012) Influence of dietary protein content and source on colonic fermentative activity in dogs differing in body size and digestive tolerance. J Anim Sci 90:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohide H, Miyoshi Y, Maruyama R, Hamase K, Konno R (2011) D-amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B 879:3162–3168

    Article  CAS  Google Scholar 

  • Outerbridge CA, Marks SL, Rogers QR (2002) Plasma amino acid concentrations in 36 dogs with histologically confirmed superficial necrolytic dermatitis. Vet Dermatol 13:177–186

    Article  PubMed  Google Scholar 

  • Owens TJ (2016) Amino acid concentrations in entire ground rabbit carcasses with and without gastrointestinal tracts and the effect of freezer storage. MS Thesis, University of California, Davis, CA

    Google Scholar 

  • Pan Y (2007) Effects of isoflavones on body fat accumulation in neutered male and female dogs. FASEB J 21:A373

    Article  Google Scholar 

  • Pinna C, Vecchiato CG, Cardenia V, Rodriguez-Estrada MT, Stefanelli C, Grandi M, Gatta PP, Biagi G (2017) An in vitro evaluation of the effects of a Yucca schidigera extract and chestnut tannins on composition and metabolic profiles of canine and feline faecal microbiota. Arch Anim Nutr 71:395–412

    Article  CAS  PubMed  Google Scholar 

  • Platt SR (2007) The role of glutamate in central nervous system health and disease--a review. Vet J 173:278–286

    Article  CAS  PubMed  Google Scholar 

  • Podell M, Hadjiconstantinou M (1997) Cerebrospinal fluid gamma-aminobutyric acid and glutamate values in dogs with epilepsy. Am J Vet Res 58:451–456

    CAS  PubMed  Google Scholar 

  • Pool-Zobel B, Van Loo J, Rowland I, Roberfroid M (2002) Experimental evidences on the potential of prebiotic fructans to reduce the risk of colon cancer. Br J Nutr 87(S2):S273–S281

    Article  CAS  PubMed  Google Scholar 

  • Power E (2008) Furry families: making a human–dog family through home. Soc Cult Geogr 9:535–555

    Article  Google Scholar 

  • Puurunen J, Tiira K, Vapalahti K, Lehtonen M, Hanhineva K, Lohi H (2018) Fearful dogs have increased plasma glutamine and gamma-glutamyl glutamine. Sci Rep 8:15976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranz D, Gutbrod F, Eule C, Kienzle E (2002) Nutritional lens opacities in two litters of Newfoundland dogs. J Nutr 132:1688S–1689S

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (1996) Synthesis, modifications, and turnover of proteins during aging. Exp Gerontol 31:33–47

    Article  CAS  PubMed  Google Scholar 

  • Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM (2009) L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res 2:45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S, Holmes E, Nicholson JK (2013) Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J Proteome Res 12:3117–3127

    Article  CAS  PubMed  Google Scholar 

  • Rocha DM, Faloona GR, Unger RH (1972) Glucagon-stimulating activity of 20 amino acids in dogs. J Clin Invest 51:2346–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romsos D, Ferguson D (1983) Regulation of protein intake in adult dogs. J Am Vet Med Assoc 182:41–43

    CAS  PubMed  Google Scholar 

  • Ruth MR, Field CJ (2013) The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol 4:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    Google Scholar 

  • Sanderson SL, Gross KL, Ogburn PN, Calvert C, Jacobs G, Lowry SR, Bird KA, Koehler LA, Swanson LL (2001) Effects of dietary fat and L-carnitine on plasma and whole blood taurine concentrations and cardiac function in healthy dogs fed protein-restricted diets. Am J Vet Res 62:1616–1623

    Article  CAS  PubMed  Google Scholar 

  • Sarwar Gilani G, Wu Xiao C, Cockell KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108(Suppl 2):S315–S332

    Article  CAS  PubMed  Google Scholar 

  • Sasabe J, Suzuki M (2018) Emerging role of D-amino acid metabolism in the innate defense. Front Microbiol 9:933

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder SH, Kim PM (2000) D-amino acids as putative neurotransmitters: focus on D-serine. Neurochem Res 25:553–560

    Article  CAS  PubMed  Google Scholar 

  • Stevens CE, Hume ID (2004) Comparative physiology of the vertebrate digestive system. Cambridge University Press, Cambridge

    Google Scholar 

  • Stone TW, Stoy N, Darlington LG (2013) An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol Sci 34:136–143

    Article  CAS  PubMed  Google Scholar 

  • Strieker MJ, Morris JG, Rogers QR (2006) Increasing dietary crude protein does not increase the essential amino acid requirements of kittens. J Anim Physiol Anim Nutr 90:344–353

    Article  CAS  Google Scholar 

  • Stubbs A, Wheelhouse N, Lomax M, Hazlerigg D (2002) Nutrient-hormone interaction in the ovine liver: methionine supply selectively modulates growth hormone-induced IGF-I gene expression. J Endocrinol 174:335–341

    Article  CAS  PubMed  Google Scholar 

  • Taylor T, Morris J, Kass P, Rogers Q (1997) Increasing dispensable amino acids in diets of kittens fed essential amino acids at or below their requirement increases the requirement for arginine. Amino Acids 13:257–272

    Article  CAS  Google Scholar 

  • Tôrres CL, Hickenbottom SJ, Rogers QR (2003) Palatability affects the percentage of metabolizable energy as protein selected by adult beagles. J Nutr 133:3516–3522

    Article  PubMed  Google Scholar 

  • Tran QD, Hendriks WH, van der Poel AF (2008) Effects of extrusion processing on nutrients in dry pet food. J Sci Food Agric 88:1487–1493

    Article  CAS  Google Scholar 

  • van Rooijen C, Bosch G, van der Poel AF, Wierenga PA, Alexander L, Hendriks WH (2013) The Maillard reaction and pet food processing: effects on nutritive value and pet health. Nutr Res Rev 26:130–148

    Article  PubMed  CAS  Google Scholar 

  • Verbrugghe A, Hesta M, Daminet S, Polis I, Holst JJ, Buyse J, Wuyts B, Janssens GP (2012) Propionate absorbed from the colon acts as gluconeogenic substrate in a strict carnivore, the domestic cat (Felis catus). J Anim Physiol Anim Nutr 96:1054–1064

    Article  CAS  Google Scholar 

  • Wambacq W, Rybachuk G, Jeusette I, Rochus K, Wuyts B, Fievez V, Nguyen P, Hesta M (2016) Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet. BMC Vet Res 12:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK (2007) Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res 6:1846–1854

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Brooks M, Gardner C, Milgram N (2017) Effect of neuroactive nutritional supplementation on body weight and composition in growing puppies. J Nutr Sci 6:e56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wannemacher R Jr, McCoy JR (1966) Determination of optimal dietary protein requirements of young and old dogs. J Nutr 88:66–74

    Article  PubMed  Google Scholar 

  • Watson A, Servet E, Hervera M, Biourge VC (2015) Tyrosine supplementation and hair coat pigmentation in puppies with black coats–a pilot study. J Appl Anim Nutr 3:e10

    Article  Google Scholar 

  • Weber M, Bissot T, Servet E, Sergheraert R, Biourge V, German AJ (2007) A high-protein, high-fiber diet designed for weight loss improves satiety in dogs. J Vet Intern Med 21:1203–1208

    Article  PubMed  Google Scholar 

  • White TD, Boudreau JC (1975) Taste preferences of the cat for neurophysiologically active compounds. Physiol Psychol 3:405–410

    Article  Google Scholar 

  • Willis S (2003) The use of soybean meal and full fat soybean meal by the animal feed industry. In: 12th Australian soybean conference, Toowomba, Australia. pp. 1–8

    Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zentek J, Meyer H (1995) Normal handling of diets are all dogs created equal? J Small Anim Pract 36:354–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita M. Oberbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oberbauer, A.M., Larsen, J.A. (2021). Amino Acids in Dog Nutrition and Health. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_10

Download citation

Publish with us

Policies and ethics