Improving the Attention Span of Elementary School Children in Mexico Through a S4 Technology Platform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12015)


Today’s education faces a powerful enemy: lack of interest from students, who, even when attending class, find themselves distracted. This enemy has been in our schools for a long time, where technology has made it worse. This investigation intends to turn technology back to our side by proposing the use of an assistive robot, proving that it is capable of attracting student’s attention and increasing their motivation for a Physical Education (PE) class. This paper demonstrates that for the use of this robot, the characteristics of a sensitive, sustainable, intelligent, and social service/product (S4 products) need to be covered. The obtained data was analyzed from both an engineering and a psychological background. This study concludes that the attention span of children improves while their motivation increases as a result of participating in a robot-assisted PE class.


Social robotics Assistive education S4 products Educational innovation Higher education 



The authors would like to thank the enthusiastic participation of the personnel and directing body of the Public Elementary School “Martin Torres Padilla” for their collaboration in the development of this project.

The authors would like to acknowledge the financial and technical support of Writing Lab, TecLabs, Tecnologico de Monterrey, Mexico, in the production of this work.


  1. 1.
    Conesa, P.V., Juan, F.R.: Clima motivacional en Educación Física y actividad físico-deportiva en el tiempo libre en alumnado de España, Costa Rica y México. In: Federación Española de Asociaciones de Docentes de Educación Física (FEADEF) (ed.) Retos: nuevas tendencias en educación física, deporte y recreación, vol. 29, pp. 195–200 (2016)Google Scholar
  2. 2.
    Administración Federal de Servicios Educativos en el D.F.: El trastorno por déficit de atención con o sin hiperactividad (TDA-TDAH): Atención a la diversidad en escuelas inclusivas. Secretaría de Educación Pública (SEP), Mexico City (2011)Google Scholar
  3. 3.
    World Health Organization: Physical activity: fact sheets. World Health Organization (WHO) (2018)Google Scholar
  4. 4.
    Teixeira Costa, H.J., Abelairas-Gomez, C., Arufe-Giraldez, V., Pazos-Couto, J.M., Barcala-Furelos, R.: Influence of a physical education plan on psychomotor development profiles of preschool children. J. Hum. Sport Exerc. 10(1), 126–140 (2015)CrossRefGoogle Scholar
  5. 5.
    Ghiglion, M., Filippetti, A., Manucci, V., Apaz, A.: Programa de Intervención para Fortalecer Funciones Cognitivas y Lingüísticas, Adaptado al Currículo Escolar en Niños en Riesgo por Pobreza. Interdisciplinaria 28(1), 17–36 (2011)Google Scholar
  6. 6.
    Ferraro, R.A., Lerch, C.: Qué es qué en Tecnología?, Granica (1997)Google Scholar
  7. 7.
    Werner, F., Krainer, D., Oberzaucher, J., Werner, K.: Evaluation of the acceptance of a social assistive robot for physical training support together with older users and domain experts. In: Assistive Technology: From Research to Practice: AAATE, vol. 33, no. 2013, p. 137 (2013)Google Scholar
  8. 8.
    Krainer, D., Werner, F., Oberzaucher, J.: Performance of a socially assistive robot as trainer for physical exercises for older people. Wohnen–Pflege–Teilhabe–“Besser leben durch Technik” (2014)Google Scholar
  9. 9.
    Heredia, Y.: Incorporación de tecnología educativa en educación básica: dos escenarios escolares en México. In: XI Encuentro Internacional Virtual Educa, Santo Domingo (2010)Google Scholar
  10. 10.
    Sternberg, R.J., Salinas, M.E.O., Julio, E.R., Ponce, L.R.: Psicología Cognoscitiva, 5th edn. Cengage Learning, São Paulo (2010)Google Scholar
  11. 11.
    Sánchez, P.A., Martínez, M.B.: Guía para la observación de los parámetros psicomotores. Revista Interuniversitaria de Formación del Profesorado 37, 63–85 (2000)Google Scholar
  12. 12.
    Díaz, L.: La observación (2010)Google Scholar
  13. 13.
    Sas, L.G., Fariña, E.F., Ferreiro, M.C., Fernández, J.E.R., Couto, J.P.: Mejora de la autoestima e inteligencia emocional a través de la psicomotricidad y de talleres de habilidades sociales. Sportis 3(1), 187–205 (2017)Google Scholar
  14. 14.
    Kawulich, B.B.: Participant observation as a data collection method. Forum Qualitative Sozialforschung/Forum Qual. Soc. Res. 6(2) (2005)Google Scholar
  15. 15.
    Goh, H., Aris, B.: Using robotics in education: lessons learned and learning experiences. In: 1st International Malaysian Educational Technology Convention (2007)Google Scholar
  16. 16.
    Reich-Stiebert, N., Eyssel, F.: Learning with educational companion robots? Toward attitudes on education robots, predictors of attitudes, and application potentials for education robots. Int. J. Social Robot. 7(5), 875–888 (2015). Scholar
  17. 17.
    Blar, N., Jafar, F.A., Idris, S.A.: Robot and human teacher. In: 2014 International Conference on Computer, Information and Telecommunication Systems (CITS) (2014)Google Scholar
  18. 18.
    Alemi, M., Meghdari, A., Ghazisaedy, M.: The impact of social robotics on L2 learners’ anxiety and attitude in English vocabulary acquisition. Int. J. Social Robot. 7(4), 523–535 (2015). Scholar
  19. 19.
    Fasola, J., Mataric, M.: A socially assistive robot exercise coach for the elderly. J. Hum. Robot Interact. 2(2), 3–32 (2013)CrossRefGoogle Scholar
  20. 20.
    Ros, R., Baroni, L., Demiris, Y.: Adaptive human-robot interaction in sensorimotor task instruction: from human to robot dance tutors. Robot. Auton. Syst. 62(6), 707–720 (2014)CrossRefGoogle Scholar
  21. 21.
    Shamsuddin, S., et al.: Humanoid robot NAO: review of control and motion exploration. In: 2011 IEEE International Conference on Control System, Computing and Engineering, pp. 511–516. IEEE, November 2011Google Scholar
  22. 22.
    Saerbeck, M., Schut, T., Bartneck, C., Janse, M.D.: Expressive robots in education: varying the degree of social, supportive behavior of a robotic tutor. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2010)Google Scholar
  23. 23.
    Pot, E., Monceaux, J., Gelin, R., Maisonnier, B.: Choregraphe: a graphical tool for humanoid robot programming. In: RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 46–51. IEEE, September 2009Google Scholar
  24. 24.
    Chavarría-Barrientos, D., Camarinha-Matos, L.M., Molina, A.: Achieving the sensing, smart and sustainable “everything”. In: Camarinha-Matos, L.M., Afsarmanesh, H., Fornasiero, R. (eds.) PRO-VE 2017. IAICT, vol. 506, pp. 575–588. Springer, Cham (2017). Scholar
  25. 25.
    Molina Gutiérrez, A., et al.: Open innovation laboratory for rapid realisation of sensing, smart and sustainable products: motives, concepts and uses in higher education. In: Camarinha-Matos, L.M., Afsarmanesh, H., Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 156–163. Springer, Cham (2018). Scholar
  26. 26.
    Odorico, A.: Marco teorico para una robotica pedagogica. Rev. Informatica Educ. y Medios Audiovisuales 1(3), 34–46 (2004)Google Scholar
  27. 27.
    Park, I.-W., Han, J.: Teachers’ views on the use of robots and cloud services in education for sustainable development. Cluster Comput. 19(2), 987–999 (2016). Scholar
  28. 28.
    Miranda, J., Pérez-Rodríguez, R., Borja, V., Wright, P.K., Molina, A.: Sensing, smart and sustainable product development (S3 product) reference framework. Int. J. Prod. Res., 1–22 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Engineering and SciencesTecnologico de MonterreyMexico CityMexico
  2. 2.Writing Lab, TecLabsTecnologico de MonterreyMonterreyMexico
  3. 3.Psychology FacultyUNAMMexico CityMexico

Personalised recommendations