Skip to main content

Ultrasound in Pregnancy – From Ultrasound Physics to Morphological and Functional Measurements of the Fetus

  • Chapter
  • First Online:
Innovative Technologies and Signal Processing in Perinatal Medicine

Abstract

Ultrasound is the leading technology to monitor the progress of pregnancy and the fetal condition. This chapter presents the basic principles of ultrasound, including the generation of ultrasound pressure waves through electromechanical conversion, their propagation through lossless and lossy media, and the formation of ultrasound images using array transducers. Special attention is dedicated to the resolution of the imaging system, which affects the accuracy of the morphological measurements performed during pregnancy. Besides imaging, ultrasound Doppler principles have provided important solutions for the estimation of blood velocity. The available solutions, ranging from continuous- to pulsed-wave Doppler, up to more advanced color and power Doppler, are presented and critically discussed for their advantages and limitations in pregnancy. The last part of the chapter is dedicated to the clinical use of ultrasound in pregnancy. The main ultrasound tests are presented in chronological order from the first to the third trimester of gestation, monitoring pregnancy progression from embryo development all the way to labor and delivery. Latest developments, such as dynamic 3D and ultrafast imaging, are also briefly presented, along with their expected impact on pregnancy monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webster, J.G.: Medical instrumentation-application and design. J. Clin. Eng. 3(3), 306 (1978)

    Article  Google Scholar 

  2. Álvarez-Arenas, T.E.G.: Acoustic impedance matching of piezoelectric transducers to the air. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 51(5), 624–633 (2004)

    Article  Google Scholar 

  3. Cobbold, R.S.C.: Foundations of Biomedical Ultrasound. Oxford University Press, New York (2007)

    Google Scholar 

  4. Mischi, M., Rognin, N., Averkiou, M.: Ultrasound imaging modalities. In: Comprehensive Biomedical Physics, pp. 323–341. Oxford, Elsevier (2014)

    Google Scholar 

  5. Thijssen, J.M., Mischi, M.: Ultrasound imaging arrays. In: Comprehensive Biomedical Physics, pp. 361–386. Oxford, Elsevier (2014)

    Google Scholar 

  6. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE. 66(1), 51–83 (1978)

    Article  Google Scholar 

  7. Tanter, M., Fink, M.: Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 61(1), 102–119 (2014)

    Article  Google Scholar 

  8. Montaldo, G., Tanter, M., Bercoff, J., Benech, N., Fink, M.: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56(3), 489–506 (2009)

    Article  Google Scholar 

  9. Jensen, J.A., Nikolov, S.I., Gammelmark, K.L., Pedersen, M.H.: Synthetic aperture ultrasound imaging. Ultrasonics. 44, e5–e15 (2006)

    Article  Google Scholar 

  10. Nyborg, W.L.: Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med. Biol. 27(3), 301–333 (2001)

    Article  Google Scholar 

  11. Rognin, N.G., Frinking, P., Costa, M., Arditi, M.: In-vivo perfusion quantification by contrast ultrasound: Validation of the use of linearized video data vs. raw RF data. In: Proceedings - IEEE Ultrasonics Symposium, Beijing, China, pp. 1690–1693 (2008)

    Google Scholar 

  12. Wagner, R.F., Insana, M.F., Wagner, D.G.: Statistical properties of radio-frequency and envelope-detected signals with applications to medical ultrasound. J. Opt. Soc. Am. A. 4(5), 910–922 (1987)

    Article  Google Scholar 

  13. Bohs, L.N., Trahey, G.E.: A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. I.E.E.E. Trans. Biomed. Eng. 38(3), 280–286 (1991)

    Google Scholar 

  14. DeVore, G.R., Falkensammer, P., Sklansky, M.S., Platt, L.D.: Spatio-temporal image correlation (STIC): new technology for evaluation of the fetal heart. Ultrasound Obstet. Gynecol. 22(4), 380–387 (2003)

    Article  Google Scholar 

  15. Bonnefous, O.: Time domain formulation of pulse-Doppler ultrasound and blood velocity estimation by cross correlation. Ultrason. Imaging. 8(2), 73–85 (1986)

    Article  Google Scholar 

  16. Kasai, C., Namekawa, K., Koyano, A., Omoto, R.: Real-time two-dimensional blood flow imaging using an autocorrelation technique. IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985)

    Article  Google Scholar 

  17. Loupas, T., Gill, R.W., Powers, J.T.: An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42(4), 672–688 (1995)

    Article  Google Scholar 

  18. Rubin, J.M., Bude, R.O., Carson, P.L., Bree, R.L., Adler, R.S.: Power Doppler US: a potentially useful alternative to mean frequency-based color Doppler US. Radiology. 190(3), 853–856 (1994)

    Article  Google Scholar 

  19. Robinson, H.P., Fleming, J.E.E.: A critical evaluation of sonar ‘crown-rump length’ measurements. BJOG Int. J. Obstet. Gynaecol. 82(9), 702–710 (1975)

    Article  Google Scholar 

  20. Wright, D., Kagan, K.O., Molina, F.S., Gazzoni, A., Nicolaides, K.H.: A mixture model of nuchal translucency thickness in screening for chromosomal defects. Ultrasound Obstet. Gynecol. 31(4), 376–383 (2008)

    Article  Google Scholar 

  21. Souka, A.P., Krampl, E., Bakalis, S., Heath, V., Nicolaides, K.H.: Outcome of pregnancy in chromosomally normal fetuses with increased nuchal translucency in the first trimester. Ultrasound Obstet. Gynecol. 18(1), 9–17 (2001)

    Article  Google Scholar 

  22. Kagan, K.O., Wright, D., Valencia, C., Maiz, N., Nicolaides, K.H.: Screening for trisomies 21, 18 and 13 by maternal age, fetal nuchal translucency, fetal heart rate, free -hCG and pregnancy-associated plasma protein-A. Hum. Reprod. 23(9), 1968–1975 (2008)

    Article  Google Scholar 

  23. Van Der Linde, D., et al.: Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58(21), 2241–2247 (2011)

    Article  Google Scholar 

  24. van Velzen, C., et al.: Prenatal detection of congenital heart disease-results of a national screening programme. BJOG Int. J. Obstet. Gynaecol. 123(3), 400–407 (2016)

    Article  Google Scholar 

  25. Fischer, R.L.: Amniotic Fluid: Physiology and Assessment. Glob. Libr. Women’s Med. (2008) https://doi.org/10.3843/GLOWM.10208

  26. Hamelmann, P., et al.: Doppler ultrasound technology for fetal heart rate monitoring: a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 67(2), 226–238 (2020)

    Article  Google Scholar 

  27. Ayres-de-Campos, D., Spong, C.Y., Chandraharan, E.: FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int. J. Gynecol. Obstet. 131(1), 13–24 (2015)

    Article  Google Scholar 

  28. Ananth, C.V., Chauhan, S.P., Chen, H.-Y., D’Alton, M.E., Vintzileos, A.M.: Electronic fetal monitoring in the United States. Obstet. Gynecol. 121(5), 927–933 (2013)

    Article  Google Scholar 

  29. Signorini, M.G., Fanelli, A., Magenes, G.: Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology. Comput. Math. Methods Med. 2014, 707581 (2014)

    Article  Google Scholar 

  30. Ayres-de-Campos, D., Bernardes, J.: Twenty-five years after the FIGO guidelines for the use of fetal monitoring: time for a simplified approach? Int. J. Gynecol. Obstet. 110(1), 1–6 (2010)

    Article  Google Scholar 

  31. Hamelmann, P., et al.: Improved ultrasound transducer positioning by fetal heart location estimation during Doppler based heart rate measurements. Physiol. Meas. 38(10), 1821–1836 (2017)

    Article  Google Scholar 

  32. Kribèche, A., Tranquart, F., Kouame, D., Pourcelot, L.: The Actifetus system: a multidoppler sensor system for monitoring fetal movements. Ultrasound Med. Biol. 33(3), 430–438 (2007)

    Article  Google Scholar 

  33. Hamelmann, P., Mischi, M., Kolen, A., van Laar, J., Vullings, R., Bergmans, J.: Fetal heart rate monitoring implemented by dynamic adaptation of transmission power of a flexible ultrasound transducer array. Sensors. 19(5), 1195 (2019)

    Article  Google Scholar 

  34. Hamelmann, P., Vullings, R., Mischi, M., Kolen, A.F., Schmitt, L., Bergmans, J.W.M.: An extended Kalman filter for fetal heart location estimation during Doppler-based heart rate monitoring. IEEE Trans. Instrum. Meas. 68(9), 3221–3231 (2019)

    Article  Google Scholar 

  35. Casciaro, S., et al.: Automatic evaluation of progression angle and fetal head station through intrapartum echographic monitoring. Comput. Math. Methods Med. 2013, 278978 (2013)

    Article  Google Scholar 

  36. Van Baaren, G.J., et al.: Predictive value of cervical length measurement and fibronectin testing in threatened preterm labor. Obstet. Gynecol. 123(6), 1185–1192 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Mischi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mischi, M., van Laar, J. (2021). Ultrasound in Pregnancy – From Ultrasound Physics to Morphological and Functional Measurements of the Fetus. In: Pani, D., Rabotti, C., Signorini, M.G., Burattini, L. (eds) Innovative Technologies and Signal Processing in Perinatal Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-54403-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54403-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54402-7

  • Online ISBN: 978-3-030-54403-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics