Skip to main content

Neurobiology of Memory and Sleep

  • Chapter
  • First Online:
Sleep Neurology

Abstract

There are three major sub-processes in memory production – encoding, consolidation, and retrieval. While encoding and retrieval occur frequently during wakefulness, sleep likely plays a major role in consolidation, the process by which newly acquired (and generally labile) memories encoded during wakefulness are reprocessed and converted into a more stable form and then integrated into preexisting memory networks (long-term storage). This process depends on two types of consolidation mechanisms; the first is referred to as “synaptic consolidation” which leads to remodeling and more effective synapses, and the second is “system consolidation,” which redistributes newly encoded representations to other neuronal circuitries for long-term storage. Long-term memory is divided into two main types: declarative and non-declarative. Declarative memories require the involvement of medial temporal regions, specifically the hippocampus, with episodic memories rooted in temporal regions. Non-declarative memories, such as perceptual skills, originate from sensory cortices and procedural memories from the cerebellum, striatum, and motor areas. Slow wave sleep, sleep spindles, and REM sleep appear to be the three main neurophysiological counterparts of the memory consolidation processes taking place during sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wirtzung C. The general Practise of Physicke: Conteyning all inward and outward parts of the body, with all the accidents and infirmities that are incident unto them, Euen from the Crowne of the head to the sole of the Foote. London: Thomas Adams; 1617.

    Google Scholar 

  2. Jones J. The mysteries of opium Reveal’d: by Dr. John Jones. London: Richard Smith; 1701.

    Google Scholar 

  3. Hartley D. Observations on man, his frame, his duty, and his expectations. Warrington: J. Johnson; 1801.

    Google Scholar 

  4. Jenkins J, Dallenbach K. Obliviscence during sleep and waking. Am J Psychol. 1924;35:605–12.

    Article  Google Scholar 

  5. Dudai Y. The neurobiology of consolidations, or how stable is the engram? Annu Rev Psychol. 2004;55:51–86.

    Article  PubMed  Google Scholar 

  6. Hofer SB. Structural traces of past experience in the cerebral cortex. J Mol Med. 2010;88:235–9.

    Article  PubMed  Google Scholar 

  7. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–8.

    Article  CAS  PubMed  Google Scholar 

  8. Redondo RL, Morris RGM. Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci. 2011;12:17–30.

    Article  CAS  PubMed  Google Scholar 

  9. Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6:119–30.

    Article  CAS  PubMed  Google Scholar 

  10. Spencer R, Walker M, Stickgold R. Sleep and memory consolidation. In: Sleep disorders medicine: basic science, technical considerations and clinical aspects. 4th ed. New York: Springer; 2017. p. 205–23.

    Chapter  Google Scholar 

  11. Corkin S. What’s new with the amnesic patient HM? Nat Rev Neurosci. 2002;3:153–60.

    Article  CAS  PubMed  Google Scholar 

  12. Peigneux P, Laureys S, Delbeuck X, Maquet P. Sleeping brain, learning brain. The role of sleep for memory systems. Neruoreport. 2001;12:A111–24.

    Article  CAS  Google Scholar 

  13. Van Ormer EB. Sleep and retention. Psychol Bull. 1933;30:415–39.

    Article  Google Scholar 

  14. Patrick G. On the effects of loss of sleep. Psychol Rev. 1896;3:468–83.

    Google Scholar 

  15. Thorndike EL. Educational psychology, The psychology of learning, vol. 2. New York: Teachers College Press; 1913.

    Google Scholar 

  16. McGeoch JA. Forgetting and the law of disuse. Psychol Rev. 1932;39:352–70.

    Article  Google Scholar 

  17. Keppel G. Consolidation and forgetting. In: Weingartner H, Parker ES, editors. Consolidation and forgetting. Hillsdale, NJ: Lawrence Erlbaum Associates; 1984.

    Google Scholar 

  18. Ellenbogen J, Payne J, Stickgold R. The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr Opin Neurobiol. 2006;16:716–22.

    Article  CAS  PubMed  Google Scholar 

  19. Gais S, Lucas B, Born J. Sleep after learning aids memory recall. Learn Mem. 2006;13:259–62.

    Article  PubMed  Google Scholar 

  20. Van der Werf Y, Altena E, Schoonheim M, Sanz-Arigita E, Vis J, de Rijke W, van Someren EJW. Sleep benefits subsequent hippocampal functioning. Nat Neurosci. 2009;12:122–3.

    Article  CAS  Google Scholar 

  21. Van der Werf Y, Altena E, Vis J, Koene T, van Someren EJW. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning. Prog Brain Res. 2011;193:245–55.

    Article  Google Scholar 

  22. Holz J, Piosczyk H, Feige B, et al. EEG sigma and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation. J Sleep Res. 2012;21:612–9.

    Article  PubMed  Google Scholar 

  23. Heib DP, Hoedlmoser K, Anderer P, et al. Slow oscillation amplitudes and up-state lengths relate to memory improvement. PLoS One. 2013;8:e82049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rasch B, Buchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science. 2007;315(5817):1426–9.

    Article  CAS  PubMed  Google Scholar 

  25. Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci. 2005;25:9398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ, Steriade M. Short-and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J Physiol. 2002;542:583–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fogel SM, Smith CT. Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep Res. 2006;15(3):250–5.

    Article  PubMed  Google Scholar 

  28. Fogel SM, Smith CT. The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev. 2011;35(5):1154–65.

    Article  PubMed  Google Scholar 

  29. Laventure S, Fogel S, Lungu O, Albouy G, Sevigny-Dupont P, Vien C, et al. NREM2 and sleep spindles are instrumental to the consolidation of motor sequence memories. PLoS Biol. 2016;14(3):e1002429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One. 2007;2(4):e341.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron. 2002;35(1):205–11.

    Article  CAS  PubMed  Google Scholar 

  32. Ackermann S, Rasch B. Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep. 2014;14(2):430.

    Article  PubMed  Google Scholar 

  33. Barakat M, Doyon J, Debas K, Vandewalle G, Morin A, Poirier G, et al. Fast and slow spindle involvement in the consolidation of a new motor sequence. Behav Brain Res. 2011;217(1):117–21.

    Article  CAS  PubMed  Google Scholar 

  34. Barakat M, Carrier J, Debas K, Lungu O, Fogel S, Vandewalle G, et al. Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Hum Brain Mapp. 2013;34(11):2918–28.

    Article  PubMed  Google Scholar 

  35. Debas K, Carrier J, Orban P, Barakat M, Lungu O, Vandewalle G, et al. Brain plasticity related to the consolidation of motor sequence learning and motor adaptation. Proc Natl Acad Sci U S A. 2010;107(41):17839–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Debas K, Carrier J, Barakat M, Marrelec G, Bellec P, Hadj Tahar A, et al. Off-line consolidation of motor sequence learning results in greater integration within a cortico-striatal functional network. NeuroImage. 2014;99:50–8.

    Article  PubMed  Google Scholar 

  37. Albouy G, Sterpenich V, Balteau E, Vandewalle G, Desseilles M, Dang-Vu T, et al. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron. 2008;58(2):261–72.

    Article  CAS  PubMed  Google Scholar 

  38. Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, et al. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PLoS One. 2013;8(3):e59490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albouy G, Fogel S, King BR, Laventure S, Benali H, Karni A, et al. Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. NeuroImage. 2015;108:423–34.

    Article  PubMed  Google Scholar 

  40. Gais S, Molle M, Helms K, Born J. Learning-dependent € increases in sleep spindle density. J Neurosci. 2002;22:6830–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clemens Z, Fabo D, Halasz P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience. 2005;132:529–35.

    Article  CAS  PubMed  Google Scholar 

  42. Bodizs R, Gombos F, Ujma PP, Kovacs I. Sleep spindling and fluid intelligence across adolescent development: sex matters. Front Hum Neurosci. 2014;8:952.

    PubMed  PubMed Central  Google Scholar 

  43. Walker MP, van der Helm E. Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull. 2009;135(5):731e748.

    Article  Google Scholar 

  44. Bennion KA, Payne JD, Kensinger EA. Selective effects of sleep on emotional memory: what mechanisms are responsible? Trans Issu Psychol Sci. 2015;1(1):79e88.

    Google Scholar 

  45. Genzel L, Spoormaker V, Konrad BN, Dresler M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem. 2015;122:110e121.

    Article  Google Scholar 

  46. Wiesner CD, Pulst J, Krause F, Elsner M, Baving L, Pedersen A, et al. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories. Neurobiol Learn Mem. 2015;122:131e141.

    Article  Google Scholar 

  47. Groch S, Zinke K, Wilhelm I, Born J. Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory. Neurobiol Learn Mem. 2015;122:122e130.

    Article  Google Scholar 

  48. Payne JD, Chambers AM, Kensinger EA. Sleep promotes lasting changes in selective memory for emotional scenes. Front Integr Neuros. 2012;6:108.

    Article  Google Scholar 

  49. Gilson M, Deliens G, Leproult R, Bodart A, Nonclercq A, Ercek R, et al. REM-enriched naps are associated with memory consolidation for sad stories and enhance mood-related reactivity. Brain Sci. 2015;6(1):1e18.

    Article  Google Scholar 

  50. Harrington MO, Pennington K, Durrant SJ. The “affect tagging and consolidation” (ATaC) model of depression vulnerability. Neurobiol Learn Mem. 2017;140:43e51.

    Article  Google Scholar 

  51. Smith CT, Nixon MR, Nader RS. Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learn Mem. 2004;11(6):714e719.

    Article  Google Scholar 

  52. Van Schalkwijk F, Sauter C, Hoedlmoser K, Heib D, et al. The effect of daytime napping and full-night sleep on the consolidation of declarative and procedural information. J Sleep Res. 2007;28(1).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blechner, M. (2021). Neurobiology of Memory and Sleep. In: DelRosso, L.M., Ferri, R. (eds) Sleep Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-54359-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54359-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54358-7

  • Online ISBN: 978-3-030-54359-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics