Skip to main content

What Is (Special) Relativity?

  • Chapter
  • First Online:
Modern Special Relativity
  • 1339 Accesses

Abstract

We describe a few pivotal developments in recent centuries responsible for the creation of the relativistic understanding of our Universe. This chapter introduces the principle of relativity, Maxwell’s EM theory, and time as an additional coordinate. We describe 1+3-dimensional Minkowski space, world lines, proper time, and causality. A short list of key research results forming the foundation of SR caps this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Original in Latin: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare. It appears necessary to add the word ‘relative’ to the translation, yet this alters Newton’s context significantly, showing the conflict of the principle of relativity with Newton’s absolute (fixed star) reference frame.

  2. 2.

    Translated by the author from the following original: “…die mißlungenen Versuche, eine Bewegung der Erde relativ zum “Lichtmedium” zu konstatieren, führen zu der Vermutung, daß dem Begriffe der absoluten Ruhe nicht nur in der Mechanik, sondern auch in der Elektrodynamik keine Eigenschaften der Erscheinungen entsprechen, sondern daß vielmehr für alle Koordinatensysteme, für welche die mechanischen Gleichungen gelten, auch die gleichen elektrodynamischen und optischen Gesetze gelten, wie dies für die Größen erster Ordnung bereits erwiesen ist. Wir wollen diese Vermutung (deren Inhalt im folgenden “Prinzip der Relativität” genannt werden wird) zur Voraussetzung erheben…”

  3. 3.

    Ernst Mach (1838–1916), Professor at Graz, Salzburg, Prague (for most of his life), and Vienna; remembered for the Mach number, shock waves, and Mach’s principle.

  4. 4.

    Ernst Mach Die Mechanik in Ihrer Entwicklung (title translated according to the book contents): The Development of a Mechanical Universe Across Centuries 3. Auflage, F.A. Brockhaus Verlag Leipzig, (1897), reprinted by Forgotten Books Pub. ISBN 978-1-332-36427-5 (2018); English edition title: The Science of Mechanics.

  5. 5.

    J.D. Norton at: http://www.pitt.edu/ ∼jdnorton/teaching/HPS_0410/chapters/Special_relativity_ principles/, retrieved June 2016 and December 2018.

  6. 6.

    Hermann Minkowski (1864–1909), German national, a mathematician well known for number theory, made decisive contributions to SR proposing unity of time with space, and introducing the concepts of proper time and world line.

  7. 7.

    H. Minkowski, Opening of the address at the 80th Assembly of German Natural Scientists and Physicians (September 21, 1908, Cologne): Physikalische Zeitschrift 10 104–111 (1909); and Jahresbericht der Deutschen Mathematiker-Vereinigung 18 75–88 (1909), and with commentary of A. Sommerfeld reprinted in 1913, see fifth paper in the collection shown in Fig. 1.1; translated by the author from the following original: “Die Anschauungen über Raum und Zeit, die ich Ihnen entwickeln möchte, sind auf experimentell-physikalischem Boden erwachsen. Darin liegt ihre Stärke. Ihre Tendenz ist eine radikale. Von Stund’ an sollen Raum für sich und Zeit für sich völlig zu Schatten herabsinken und nur noch eine Art Union der beiden soll Selbständigkeit bewahren.”

  8. 8.

    W. Rindler, Einstein’s Priority in Recognizing Time Dilation Physically, American Journal of Physics, 38 (1970) 1111. However, J.S. Bell in a letter to the author, Ref. [3] in preface, suggests Larmor proposing local time was aware time is not universal.

  9. 9.

    George Francis FitzGerald, “The Ether and the Earth’s Atmosphere,” Science, 13 390 (1889). A historical account of complex research carried out prior to this short published note is described by B.J. Hunt, The Maxwellians, Cornell University Press (1991), pp. 185–197.

  10. 10.

    H.A. Lorentz, §89–92 extracted from Versuch einer Theorie der Elektrischen und Optischen Erscheinungen in Bewegten Körpern (Leiden 1895) republished in original German, and in 1923 translated under title Michelson’s Interference Experiment, as the first paper in the collection shown in Fig. 1.1.

  11. 11.

    The Lorenz gauge condition is not named after Lorentz.

  12. 12.

    H.A. Lorentz, Electromagnetic Phenomena in a System Moving with any Velocity Less than that of Light, Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6, pp. 809–831 (1904), the second article in the collection shown in Fig. 1.1.

  13. 13.

    Sir Joseph Larmor (1857–1942) Irish-British physicist, Lucasian Professor of Mathematics at Cambridge, credited with discovery of the Lorentz transformation, known for Larmor radiation formula, adhered to material æther.

  14. 14.

    J. Larmor, On a dynamical theory of the electric and luminiferous medium, Phil. Trans. Roy. Soc. 190, 205 (1897); J. Larmor, Aether and Matter , Cambridge University Press (1900).

  15. 15.

    M. N. Macrossan, A note on relativity before Einstein, The British Journal for the Philosophy of Science 37, 232 (1986).

  16. 16.

    H. Poincaré, Sur la dynamique de l’électron, (On the Dynamics of the Electron), Comptes rendus de l’Académie des Sciences, 140, pp. 1504–1508 (1905), footnoted to be the written account of a lecture presented at an Academy session on June 5, 1905.

  17. 17.

    H. Poincaré, Sur la dynamique de l’électron, Rendiconti del Circolo Matematico di Palermo, 21, pp. 129–175 (December 1906), https://doi.org/10.1007/BF03013466.

  18. 18.

    A. Einstein, Zur Elektrodynamik bewegter Körper, (translated: On the electrodynamics of moving bodies,) Annalen der Physik 17 891 (1905).

  19. 19.

    Max Planck (1858–1947), a renowned German theoretical physicist, after whom the Planck constant ħ (quantum of action) is named for which he was awarded the 1918 Nobel prize. Planck recognized and advanced the work of Einstein from the beginning.

  20. 20.

    A. Einstein, Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? (translated: Does the inertia of a body depend upon its energy content?), Annalen der Physik 187, 639 (1905); received by publishers on September 27, 1905.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rafelski, J. (2022). What Is (Special) Relativity?. In: Modern Special Relativity. Springer, Cham. https://doi.org/10.1007/978-3-030-54352-5_1

Download citation

Publish with us

Policies and ethics