Skip to main content

Association Rule Mining for Unknown Video Games

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ,volume 394)

Abstract

Computational intelligence agents can reach expert levels in many known games, such as Chess, Go, and Morris. Those systems incorporate powerful machine learning algorithms, which are able to learn from, e.g., observations, play-traces, or by reinforcement learning. While many black box systems, such as deep neural networks, are able to achieve high performance in a wide range of applications, they generally lack interpretability. Additionally, previous systems often focused on a single or a small set of games, which makes it a cumbersome task to rebuild and retrain the agent for each possible application. This paper proposes a method, which extracts an interpretable set of game rules for previously unknown games. Frequent pattern mining is used to find common observation patterns in the game environment. Finally, game rules as well as winning-/losing-conditions are extracted via association rule analysis. Our evaluation shows that a wide range of game rules can be successfully extracted from previously unknown games. We further highlight how the application of fuzzy methods can advance our efforts in generating explainable artifical intelligence (AI) agents.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Borgelt, C.: Frequent item set mining. Wiley Interdisc. Rev.: Data Min. Knowl. Discovery 2(6), 437–456 (2012)

    Google Scholar 

  2. Borgelt, C., Kötter, T.: Mining fault-tolerant item sets using subset size occurrence distributions. In: Gama, J., Bradley, E., Hollmén, J. (eds.) Advances in Intelligent Data Analysis X, pp. 43–54. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)

    CrossRef  Google Scholar 

  3. Borgelt, C., Yang, X., Nogales-Cadenas, R., Carmona-Saez, P., Pascual-Montano, A.: Finding closed frequent item sets by intersecting transactions. In: Proceedings of the 14th International Conference on Extending Database Technology—EDBT/ICDT ’11, ACM Press, New York, USA, p. 367 (2011)

    Google Scholar 

  4. Campbell, M., Hoane Jr. A.J., Hsu, F.H.: Deep blue. Artif. Intell. 134(1–2), 57–83 (2002)

    Google Scholar 

  5. Core, M., Lane, H., Van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building explainable artificial intelligence systems. In: Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06. vol. 2, pp. 1766–1773 (2006)

    Google Scholar 

  6. Dockhorn, A., Apeldoorn, D.: Forward model approximation for general video game learning. In: 2018 IEEE Conference on Computational Intelligence and Games (CIG) (2018), to be published

    Google Scholar 

  7. Dockhorn, A., Tippelt, T., Kruse, R.: Model decomposition for forward model approximation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI) (2018), to be published

    Google Scholar 

  8. Giryes, R., Elad, M.: Reinforcement learning: a survey. In: European Signal Processing Conference, pp. 1475–1479 (2011)

    Google Scholar 

  9. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. (JMLR) 3(3), 1157–1182 (2003)

    MATH  Google Scholar 

  10. Ilhan, E., Etaner-Uyar, A.S.: Monte Carlo tree search with temporal-difference learning for general video game playing. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, New York, pp. 317–324 (2017)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances In Neural Information Processing Systems, pp. 1–9 (2012)

    Google Scholar 

  12. Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., Steinbrecher, M.: Computational Intelligence. Texts in Computer Science, 2nd edn. Springer, London (2016)

    Google Scholar 

  13. Laurent, A., Marsala, C., Bouchon-Meunier, B.: Improvement of the interpretability of fuzzy rule based systems: quantifiers, similarities and aggregators. In: Lawry, J., Shanahan, J., Ralescu, L.A. (eds.) Modelling with Words: Learning, Fusion, and Reasoning within a Formal Linguistic Represntation Framework, Springer, Berlin, Heidelberg, pp. 102–123 (2003)

    Google Scholar 

  14. Marsala, C.: Application of fuzzy rule induction to data mining. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, Springer, Berlin, Heidelberg, pp. 260–271 (1998)

    Google Scholar 

  15. Marsala, C., Bouchon-Meunier, B.: Fuzzy data mining and management of interpretable and subjective information. Fuzzy Sets Syst. 281, 252–259 (2015)

    Google Scholar 

  16. Mellouli, N., Bouchon-Meunier, B.: Abductive reasoning and measures of similitude in the presence of fuzzy rules. Fuzzy Sets Syst. 137(1 SPEC.), 177–188 (2003)

    Google Scholar 

  17. Mitra, S., Konwar, K., Pal, S.: Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation. IEEE Trans. Syst., Man Cybern., Part C (Appl. Rev.) 32(4), 328–339 (2002)

    Google Scholar 

  18. Pan, F., Cong, G., Tung, A.K.H., Yang, J., Zaki, M.J.: Carpenter. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’03, ACM Press, New York, USA, p. 637 (2003)

    Google Scholar 

  19. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends® Inf. Retrieval 2(1–2), 1–135 (2008)

    Google Scholar 

  20. Pei, J., Tung, A.K., Han, J.: Fault-tolerant frequent pattern mining: problems and challenges. DMKD 1, 42 (2001)

    Google Scholar 

  21. Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M., Couetoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 general video game playing competition. IEEE Trans. Comput. Intell. AI Games 8(3), 229–243 (2016)

    CrossRef  Google Scholar 

  22. Perez-Liebana, D., Stephenson, M., Gaina, R.D., Renz, J., Lucas, S.M.: Introducing real world physics and macro-actions to general video game ai. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG), IEEE, pp. 248–255 (2017)

    Google Scholar 

  23. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  24. Rogers, S.: Level Up!: The Guide to Great Video Game Design. Wiley (2010)

    Google Scholar 

  25. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    CrossRef  MathSciNet  Google Scholar 

  26. Schaul, T.: An extensible description language for video games. IEEE Trans. Comput. Intell. AI in Games 6(4), 325–331 (2014)

    CrossRef  Google Scholar 

  27. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    CrossRef  Google Scholar 

  28. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    CrossRef  Google Scholar 

  29. Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3), 3–3 (2005)

    CrossRef  Google Scholar 

  30. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Kruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dockhorn, A., Saxton, C., Kruse, R. (2021). Association Rule Mining for Unknown Video Games. In: Lesot, MJ., Marsala, C. (eds) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. Studies in Fuzziness and Soft Computing, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-54341-9_22

Download citation