Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 129 Accesses

Abstract

Space-based missions using infrared astronomy technologies have revolutionized the field of astronomy, increasing our knowledge of the evolution of the universe and our own solar system. Instruments in past space missions that used long wave infrared (LWIR) detector arrays (wavelength cutoff above ∼5 μm) required cooling to very low temperatures with on-board cryogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Holes correspond to empty energy levels, and can act as a positive charge carriers with charge + q under the influence of electric and magnetic fields.

  2. 2.

    The details of this parameter and derivation of this dark current component (diffusion) is presented in Sect. 3.1.

  3. 3.

    In the detector arrays presented here, the exponent term goes to zero with ∼25 mV of reverse detector bias, where the typical applied reverse bias ranges from 50–350 mV.

  4. 4.

    Well depth is the measure of how much charge the diode can collect before it reaches saturation.

  5. 5.

    In addition to high QE and low read noise, the operability requirements also include well depths of more than 46,000 e and dark current less than 200 e s at 40 K, which will be the focal plane temperature for NC2. Since most pixels have shown to have good QE and read noise, much of the development of the LW10 devices has been focused on reducing the dark currents at the required temperature of 40 K.

  6. 6.

    This larger well depth than the applied bias is due to the pedestal injection contribution, see Sect. 2.3

References

  1. Werner, M.W., Roellig, T.L., Low, F.J., Rieke, G.H., Rieke, M., Hoffmann, W.F., Young, E., Houck, J.R., Brandl, B., Fazio, G.G., Hora, J.L., Gehrz, R.D., Helou, G., Soifer, B.T., Stauffer, J., Keene, J., Eisenhardt, P., Gallagher, D., Gautier, T.N., Irace, W., Lawrence, C.R., Simmons, L., Cleve, J.E.V., Jura, M., Wright, E.L., Cruikshank, D.P.: The Spitzer space telescope mission. Astrophys. J. Suppl. Ser. 154(1), 1–9 (2004)

    ADS  Google Scholar 

  2. Gehrz, R.D., Roellig, T.L., Werner, M.W., Fazio, G.G., Houck, J.R., Low, F.J., Rieke, G.H., Soifer, B.T., Levine, D.A., Romana, E.A., The NASA Spitzer space telescope. Rev. Sci. Instrum. 78(1), 011302 (2007)

    ADS  Google Scholar 

  3. Mainzer, A., Larsen, M., Stapelbroek, M.G., Hogue, H., Garnett, J., Zandian, M., Mattson, R., Masterjohn, S., Livingston, J., Lingner, N., Alster, N., Ressler, M., Masci, F.: Characterization of flight detector arrays for the wide-field infrared survey explorer. Proc. SPIE 7021, 12 (2008)

    Google Scholar 

  4. Kaltenegger, L.: How to characterize habitable worlds and signs of life. Annu. Rev. Astron. Astrophys. 55(1), 433–485 (2017)

    ADS  Google Scholar 

  5. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1996)

    MATH  Google Scholar 

  6. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston, New York (1976)

    Google Scholar 

  7. Hansen, G.L., Schmit, J.L.: Calculation of intrinsic carrier concentration in Hg1−xCdxTe. J. Appl. Phys. 54(3), 1639–1640 (1983)

    ADS  Google Scholar 

  8. Overhof, H.: A model calculation for the energy bands in the Hg1-xCdxTe mixed crystal system. Phys. Status Solidi B 45(1), 315–321 (1971)

    ADS  Google Scholar 

  9. Hansen, G.L., Schmit, J.L., Casselman, T.N.: Energy gap versus alloy composition and temperature in hg1-xcdxte. J. Appl. Phys. 53(10), 7099–7101 (1982)

    ADS  Google Scholar 

  10. Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (1981)

    Google Scholar 

  11. Moll, J.: Physics of Semiconductors. McGraw-Hill Physical and Quantum Electronics Series. McGraw-Hill, New York (1964)

    Google Scholar 

  12. Reine, M., Sood, A., Tredwell, T.: Photovoltaic infrared detectors. In: Willardson, R., Beer, A.C. (eds.) Mercury Cadmium Telluride, Semiconductors and Semimetals, vol. 18, Chap 6, pp. 201–311. Elsevier, Amsterdam (1981)

    Google Scholar 

  13. Kinch, M.A.: State-of-the-Art Infrared Detector Technology. SPIE Press, Bellingham (2014)

    Google Scholar 

  14. Fowler, A.M., Gatley, I.: Demonstration of an algorithm for read-noise reduction in infrared arrays. Astrophys. J. Lett. 353, L33 (1990)

    ADS  Google Scholar 

  15. Rieke, G.H.: Detection of Light: From the Ultraviolet to the Submillimeter. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  16. Forrest, W.J.: Private communication (2014)

    Google Scholar 

  17. Wu, J.: Development of infrared detectors for space astronomy. PhD thesis, University of Rochester (1997)

    Google Scholar 

  18. Bailey, R.B., Arias, J.M., McLevige, W.V., Pasko, J.G., yi Chen, A.C., Cabelli, C.A., Kozlowski, L.J., Vural, K., Wu, J., Forrest, W.J., Pipher, J.L.: Prospects for large-format IR astronomy FPAs using MBE-grown HgCdTe detectors with cutoff wavelength >  4 μm. Proc. SPIE 3354, 10 (1998)

    Google Scholar 

  19. Bacon, C.M., McMurtry, C.W., Pipher, J.L., Forrest, W.J., Garnett, J.D., Lee, D., Edwall, D.D.: Further characterization of Rockwell scientific LWIR HgCdTe detector arrays. Proc. SPIE 5563, 11 (2004)

    Google Scholar 

  20. Bacon, C.M.: Development of long wave infrared detectors for space astronomy. PhD thesis, University of Rochester (2006)

    Google Scholar 

  21. Bacon, C.M., McMurtry, C.W., Pipher, J.L., Mainzer, A., Forrest, W.: Effect of dislocations on dark current in LWIR HgCdTe photodiodes. Proc. SPIE 7742, 9 (2010)

    Google Scholar 

  22. McMurtry, C., Lee, D.L., Beletic, J., Chen, C.-Y.A., Demers, R.T., Dorn, M., Edwall, D.D., Fazar, C.M., Forrest, W.J., Liu, F., Mainzer, A.K., Pipher, J.L., Yulius, A.: Development of sensitive long-wave infrared detector arrays for passively cooled space missions. Opt. Eng. 52, 091804 (2013)

    ADS  Google Scholar 

  23. Smith, E.C., Rauscher, B.J., Alexander, D., Clemons, B.L., Engler, C., Garrison, M.B., Hill, R.J., Johnson, T., Lindler, D.J., Manthripragada, S.s., Marshall, C., Mott, B., Parr, T.M., Roher, W.D., Shakoorzadeh, K.B., Schnurr, R., Waczynski, A., Wen, Y., Wilson, D., Loose, M., Bagnasco, G., Böker, T., Marchi, G.D., Ferruit, P., Jakobsen, P., Strada, P.: JWST near infrared detectors: latest test results. Proc. SPIE 7419, 10 (2009)

    Google Scholar 

  24. Dorn, M., McMurtry, C., Pipher, J., Forrest, W., Cabrera, M., Wong, A., Mainzer, A.K., Lee, D., Pan, J.: A monolithic 2k x 2k LWIR HgCdTe detector array for passively cooled space missions. Proc. SPIE 10709, 1070907 (2018)

    Google Scholar 

  25. Dorn, M.L., Pipher, J.L., McMurtry, C.W., Hartman, S., Mainzer, A., McKelvey, M., McMurray, R., Chevara, D., Rosser, J.: Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera. J. Astron. Telesc. Instrum. Syst. 2(3), 11 (2016)

    Google Scholar 

  26. McMurtry, C.W., Dorn, M., Cabrera, M.S., Pipher, J.L., Forrest, W.J., Mainzer, A.K., Wong, A.: Candidate 10 micron HgCdTe Arrays for the NEOCam Space Mission. Proc. SPIE 9915, 8 (2016)

    Google Scholar 

  27. Carmody, M., Lee, D., Zandian, M., Phillips, J., Arias, J.: Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers. J. Electron. Mater. 32(7), 710–716 (2003)

    ADS  Google Scholar 

  28. Sah, C.T., Noyce, R.N., Shockley, W.: Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc. IRE 45(9), 1228–1243 (1957)

    Google Scholar 

  29. Martinka, M., Almeida, L.A., Benson, J.D., Dinan, J.H.: Characterization of cross-hatch morphology of MBE (211) HgCdTe. J. Electron. Mater. 30, 632–636 (2001)

    ADS  Google Scholar 

  30. Chang, Y., Becker, C., Grein, C., Zhao, J., Fulk, C., Casselman, T., Kiran, R., Wang, X., Robinson, E., An, S., Mallick, S., Sivananthan, S., Aoki, T., Wang, C., Smith, D., Velicu, S., Zhao, J., Crocco, J., Chen, Y., Brill, G., Wijewarnasuriya, P., Dhar, N., Sporken, R., Nathan, V.: Surface morphology and defect formation mechanisms for HgCdTe (211)B grown by molecular beam epitaxy. J. Electron. Mater. 37, 1171–1183 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cabrera, M. (2020). Introduction. In: Development of 15 Micron Cutoff Wavelength HgCdTe Detector Arrays for Astronomy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-54241-2_1

Download citation

Publish with us

Policies and ethics