Skip to main content

Enhancing the Energy Performance of Passive Building Through the Internet of Things

  • Conference paper
  • First Online:
Artificial Intelligence and Industrial Applications (A2IA 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 144))

Abstract

The optimization of the thermal performance of passive elements inside buildings is not always obtained, due to fluctuations of the weather conditions and internal generation. This work aims to improve the energy behavior of a building under the meteorological conditions of Fez, through a system internet of things called IOT, allow to communicate and interact with other devices, exchange data, in order to manage all the elements affecting the building namely the passive, active and consumer behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, L., Yan, H., Lam, J.C.: Thermal comfort and building energy consumption implications – a review. Appl. Energy 115, 164–173 (2014)

    Article  Google Scholar 

  2. González, A.B.R., Díaz, J.J.V., Caamaño, A.J., Wilby, M.R.: Towards a universal energy efficiency index for buildings. Energy Build. 43(4), 980–987 (2011)

    Article  Google Scholar 

  3. Piotrowska, E., Borchert, A.: Energy consumption of buildings depends on the daylight. In: E3S Web of Conferences, vol. 14, p. 01029 (2017)

    Google Scholar 

  4. Kastner, W., Neugschwandtner, G., Soucek, S., Newman, H.M.: Communication systems for building automation and control. Proc. IEEE 93(6), 1178–1203 (2005)

    Article  Google Scholar 

  5. Bhatt, J.G.: Building automation systems. In: Handbook of Research on Emerging Technologies for Electrical Power Planning, Analysis, and Optimization, pp. 235–264

    Google Scholar 

  6. Ahmadi-Karvigh, S., Becerik-Gerber, B., Soibelman, L.: Intelligent adaptive automation: a framework for an activity-driven and user-centered building automation. Energy Build. 188–189, 184–199 (2019)

    Article  Google Scholar 

  7. Villasmil, W., Fischer, L.J., Worlitschek, J.: A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 103, 71–84 (2019)

    Article  Google Scholar 

  8. Energy Saving Appliances Tiré de. http://brantfordpower.com/energy-savings-conservation/energy-savings-tips-for-home/everygy-saving-appliances/

  9. van Arem, B., Ackerman, A.A., Chang, T., Riggs, W., Wegscheider, A., Smith, S., Rupprecht, S.: Building automation into urban and metropolitan mobility planning. Lecture Notes in Mobility, pp. 123–136 (2019)

    Google Scholar 

  10. Khattabi, E.M.E., Mharzi, M., Raefat, S., Meghari, Z.: On the application of a new thermal diagnostic model: the passive elements equivalent in term of ventilation inside a room. In: IOP Conference Series: Materials Science and Engineering, vol. 353, p. 012003, May 2018

    Google Scholar 

  11. El Khattabi, E.M., Valancius, K., Mharzi, M., Zouini, M.: A thermal analysis of smart glazing under the weather conditions of Fez. Energy Procedia 147, 309–314 (2018)

    Article  Google Scholar 

  12. El khattabi, E.M., Mharzi, M., Raefat, S., Garoum, M., Valančius, K., Meghari, Z.: A thermal diagnostic method based on a new approach of wall discretization in dynamic state. J. Clean. Prod. 226, 493–502 (2019)

    Article  Google Scholar 

  13. Srinivasan, C.R., Rajesh, B., Saikalyan, P., Premsagar, K., Yadav, E.S.: A review on the different types of Internet of Things (IoT). J. Adv. Res. Dyn. Control Syst. 11(1), 154–158 (2019)

    Google Scholar 

  14. Bello, O., Zeadally, S.: Toward efficient smartification of the Internet of Things (IoT) services. Future Gener. Comput. Syst. 92, 663–673 (2019)

    Article  Google Scholar 

  15. Singh, N., Kumar, S., Kanaujia, B.K.: HC Choi et KW Kim, «Energy-Efficient System Design for Internet of Things (IoT) Devices», pp. 49–74. Studies in Systems, Decis. Control (2019)

    Google Scholar 

  16. Presse Dualsun. (Communiqués Septembre 2018). L’offre heliopacsystem+® développée par DualSun et HELIOPAC obtient un Titre V Système Dynamique

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Mehdi El Khattabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khattabi, E.M.E., Diouri, O., Mharzi, M., Jamil, M.O. (2021). Enhancing the Energy Performance of Passive Building Through the Internet of Things. In: Masrour, T., El Hassani, I., Cherrafi, A. (eds) Artificial Intelligence and Industrial Applications. A2IA 2020. Lecture Notes in Networks and Systems, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-53970-2_26

Download citation

Publish with us

Policies and ethics