Skip to main content

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 11))

Abstract

Microbial biofuel production has gained great interest over the last 3 decades due to an increase in global energy demand. Fossil fuels are not considered good as they release large volumes of greenhouse gas into the environment and ultimately cause global warming. Microorganisms from extreme environments are especially important because they have enzymes and proteins that can work properly in extreme environmental conditions, such as, extreme temperatures, pH, salinity, drought, and pressure. These microorganisms can be used in different biotechnological applications, providing great momentum for biofuel production. Extremophilic microorganisms including thermophiles, psychrophiles, halophiles, alkaliphiles, and acidophiles have the ability to produce biofuels, such as bioethanol, biobutanol, biodiesel, and biogas or methane, by using various starting materials, such as sugars, starch crops, plant seeds, lignocellulosic agricultural waste, and animal waste, under extreme environments. With progress being made with bioinformatics and gene-editing tools, microorganisms such as Saccharomyces cerevisiae, Escherichia coli, Clostridium thermocellum, Pyrobaculum calidifontis, and Thermococcus kodakarensis have been genetically engineered to upscale biofuel production. This chapter provides an overview of the various types of biofuels produced by extremophiles, their commercial scale production, and research conducted to improve current technologies. Biofuel production by thermophiles, psychrophiles, halophiles, alkaliphiles, and acidophiles is explained thoroughly. Finally, we discuss the metabolic engineering of extremophiles for upscaling biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233e71

    Google Scholar 

  • Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 1:57–66

    Google Scholar 

  • Allen TD, Caldwell ME, Lawson PA, Huhnke RL, Tanner RS (2010) Alkalibaculum bacchi gen. Nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol 60:2483–2489

    Google Scholar 

  • Amiri H, Azarbaijani R, Yeganeh LP, Fazeli AS, Tabatabaei M, et al. (2016) Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions. Sci Rep 6:18408–18418

    Google Scholar 

  • Amoozegar MA, Salehghamari E, Khajeh K, Kabiri M, Naddaf S (2008) Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2. J Microbiol Methods 48:160–167

    Google Scholar 

  • Amoozegar MA, Safarpour A, Noghabi KA, Bakhtiary T, Ventosa A (2019) Halophiles and their vast potential in biofuel production. Front Microbiol 10:1895

    Google Scholar 

  • Aslam M, Horiuchi A, Simons JR, Jha S, Yamada M, Odani T, Atomi H (2017) Engineering of the hyperthermophilic archaeon thermococcus kodakarensis for chitin-dependent hydrogen production. Appl Environ Microbiol 83:e00280

    Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Google Scholar 

  • Auria R, Boileau C, Davidson S, Casalot L, Christen P, Liebgott PP, Combet-Blanc Y (2016) Hydrogen production by the hyperthermophilic bacterium Thermotoga maritima Part II: modeling and experimental approaches for hydrogen production. Biotechnol Biofuels 9:268

    Google Scholar 

  • Baker SE, Hopkins RC, Blanchette CD, Walsworth R, Sumbad NO, et al. (2009) Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles. J Am Chem Society 131:7508–7509

    Google Scholar 

  • Bao M, Su H, Tan T (2012) Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of Bacillus sp. and Brevumdimonas sp. Energy Fuels 26:5872e8

    Google Scholar 

  • Barber RD, Zhang L, Harnack M, Olson MV, Kaul R, Ingram-Smith C, Smith KS (2011) Complete genome sequence of Methanosaeta concilii, a specialist in aceticlastic methanogenesis. J Bacteriol 193:3668–3669

    Google Scholar 

  • Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31:871–888

    Google Scholar 

  • Basen M, Schut GJ, Nguyen DM, Lipscomb GL, Benn RA, et al (2014) Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc Natl Acad Sci USA 111:17618–17623

    Google Scholar 

  • Begemann MB, Mormile MR, Sitton OC, Wall JD and Elias DA (2012) A streamlined strategy for biohydrogen production with Halanaerobium hydrogeniformans, an alkaliphilic bacterium. Front Microbio 3:93

    Google Scholar 

  • Bengelsdorf F, Straub M, Durre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651

    Google Scholar 

  • Bertoldo C, Dock C, Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng Life Sci 4:521–531

    Google Scholar 

  • Bottos EM, Scarrow JW, Archer SDJ, McDonald IR, Cary SC (2014) Bacterial community structures of antarctic soils. In: Cowan DA (ed) Antarctic terrestrial microbiology: physical and biological properties of antarctic soils. Springer, Heidelberg, p 9e34

    Google Scholar 

  • Cai ZW, Ge HH, Yi ZW, Zeng RY, Zhang GY (2018) Characterization of a novel psychrophilic and halophilic b-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. Int J Biol Macromol 118:2176–2184

    Google Scholar 

  • Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360

    Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Omar SM, Siddiqui KS Williams TJ (2010) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    Google Scholar 

  • Chandra R, Vijay V, Subbarao P, Khura T (2011) Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas. Appl Energy 88:3969–3977

    Google Scholar 

  • Chen L, Wei Y, Shi M, Li Z and Zhang SH (2019) An archaeal chitinase with a secondary capacity for catalyzing cellulose and its biotechnological applications in shell and straw degradation. Front Microbiol 10:1253

    Google Scholar 

  • Cheng J, Zhu M (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour Technol 144:623–631

    Google Scholar 

  • Cheng J, Yu Y, Zhu M (2014) Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chem 16:2689–2695

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Google Scholar 

  • Claassen PAM, de Vrije T, Budde MAW (2004) Biological hydrogen production from sweet sorghum by thermophilic bacteria. In: 2nd World conference on biomass for energy, ETA-Florence and WIP-Munich, Rome

    Google Scholar 

  • Couto GH, Glogauer A, Faoro H, Chubatsu LS, Souza et al (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9:514–523

    Google Scholar 

  • Dai H, Yang H, Liu X, Jian X, Liang Z (2016) Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbialelectrolysis cell. Fuel 174:251–256

    Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Google Scholar 

  • de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM, (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390

    Google Scholar 

  • Decker J (2009) Going against the grain: Ethanol from lignocellulosics. Renew Energy World Mag 11

    Google Scholar 

  • Demain A (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332

    Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appt Microbiol Biotechnol 63:258–266

    Google Scholar 

  • Dragone G, Fernandes BD, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. Curr Res Technol Edu Top Appl Microbiol Microb Biotechnol 2:1355–1366

    Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal Enzym 30:125–129

    Google Scholar 

  • Durre P (2005) Formation of solvents in clostridia. In: Durre P (ed) Handbook on Clostridia. CRC Press-Taylor and Francis Group, Boca Raton, USA, pp 671–93

    Google Scholar 

  • Durre P (2016) Butanol formation from gaseous substrates. FEMS Microbiol Lett 363:pii:fnw040

    Google Scholar 

  • Dutta K, Daverey A, Lin J-G (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Google Scholar 

  • Egorova K, Antranikian G (2005) Industrial relevance of thermophilic archaea. Curr Opin Microbiol 8:649–655

    Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yanez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275e87

    Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543–549

    Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200e8

    Google Scholar 

  • Franzmann PD, Liu Y, Balkwill DL, Aldrich HC, Conway De MHC, Boone DR (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47:1068–1072

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Google Scholar 

  • Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2

    Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    Google Scholar 

  • Gao Y, Jiang J, Meng Y, Yan F, Aihemaiti A (2018) A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers Manag 171:133–155

    Google Scholar 

  • Garcıa-Echauri SA, Gidekel M, Gutierrez-Moraga A, Santos L, De Leon-Rodriguez A (2011) Isolation and phylogenetic classification of culturable psychrophilic prokaryotes from the Collins glacier in the Antarctica. Folia Microbiol 56:209e14

    Google Scholar 

  • Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC

    Google Scholar 

  • Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Google Scholar 

  • Glazer AN Nikaido H (1995) Microbial biotechnology: fundamentals of applied microbiology W.H. Freeman, New York

    Google Scholar 

  • Guay R, Silver M (1975) Thiobacillus acidophilus sp. nov., isolation and some physiological characteristics. Can J Microbiol 21:281–288

    Google Scholar 

  • Gulati M, Kohlmann K, Ladisch MR, Hespell R, Bothast RJ (1996) Assessment of ethanol production options for corn products. Bioresour Technol 58:253–64

    Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818

    Google Scholar 

  • Hartley BS, Shama G (1987) Novel ethanol fermentations from sugar cane and straw. Philso Trans Roy Soc Lond A 321:555–568

    Google Scholar 

  • Heath C, Hu XP, Cary SC, Cowan D (2009) Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from Antarctic desert soil. Appl Environ Microbiol 75:4657–4659

    Google Scholar 

  • Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G (2013) Archaeal production of polyhydroxyalkanoate (pha) co- and terpolyesters from biodiesel industry-derived by-products. Archaea 2013:129268

    Google Scholar 

  • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz- Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Google Scholar 

  • Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, et al. (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26

    Google Scholar 

  • Hu B, Lidstrom ME (2014) Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnol Biofuels 7:156

    Google Scholar 

  • Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88:72–77

    Google Scholar 

  • Indira D, Das B, Balasubramanian P, Jayabalan R (2018) Sea water as a reaction medium for bioethanol production. Science 2:171–192

    Google Scholar 

  • Irshad A, Ahmad I, Kim SB (2014) Cultureable diversity of halophilic bacteria in foreshore soils. Braz J Microbiol 45:563–571

    Google Scholar 

  • Islam T, Larsen Ø, Torsvik V, Øvreås L, Panosyan H, Murrell JC (2015) Novel methanotrophs of the family Methylococcaceae from different geographical regions and habitats. Micro Organisms J 3:484–499

    Google Scholar 

  • Jeon J, Kim JT, Kang S, Lee JH, Kim SJ (2009a) Characterization and its potential application of two esterases derived from the Arctic sediment metagenome. Mar Biotechnol 11:307–316

    Google Scholar 

  • Jiang Y, Xin F, Lu J, Dong W, Zhang W, Zhang M, Wu H, Ma J, Jiang M (2017) State of the art review of biofuels production from lignocellulose by thermophilic bacteria. Bioresour Technol 245:1498–1506

    Google Scholar 

  • Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 116:271

    Google Scholar 

  • Keasling JD, Chou H (2008) Metabolic engineering delivers nextgeneration biofuels. Nat Biotech 26:298–299

    Google Scholar 

  • Keller MW, Lipscomb GL, Loder AJ, Schut GJ, Kelly RM, Adams MW (2015) A hybrid synthetic pathway for butanol production by a hyperthermophilic microbe. Metabolic Eng 27:101–6

    Google Scholar 

  • Keller MW, Lipscomb GL, Nguyen DM, Crowley AT, Schut GJ, Scott I, Adams M (2017) Ethanol production by the hyperthermophilic archaeon Pyrococcus furiosus by expression of bacterial bifunctional alcohol dehydrogenases. Microbial Biotechnol 10:1535–1545. https://doi.org/10.1111/1751-7915.12486

  • Kengen SM, Stams AJ, Vos WD (1996) Sugar metabolism of hyperthermophiles. FEMS Microbiol Rev 18:119–138

    Google Scholar 

  • Kernan T, Majumdar S, Li X, Guan J, West AC, Banta S (2016) Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production. Biotechnol Bioeng 113:189–97

    Google Scholar 

  • Kevbrin VV, Lysenko AM, Zhilina TN (1997) Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinaeae isolated from Lake Magadi. Microbiology 66:261–266

    Google Scholar 

  • Khambhaty Y, Upadhyay D, Kriplani Y, Joshi N, Mody K, Gandhi MR (2013) Bioethanol from macroalgal biomass: utilization of marine yeast for production of the same. Bioenergy Res 6:188–195

    Google Scholar 

  • Kim YJ, Lee HS, Kim ES, Bae SS, Lim JK, Matsumi R, Lebedinsky AV, et al (2010) Formate-driven growth coupled with H(2) production. Nature 467:352

    Google Scholar 

  • Kishimoto N, Inagaki K, Sugio T, Tano T (1991) Purification and properties of an acidic b-glucosidase from Acidobacterium capsulatum. J Fermen Bioeng 71:318–321

    Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C et al (2019b) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

  • Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation-the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575

    Google Scholar 

  • Kumar R, Kumar P (2017) Future microbial applications for bioenergy production: a perspective. Front Microbiol 8:450

    Google Scholar 

  • Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S et al (2019) Bioprospecting of microbes for biohydrogen production: current status and future challenges. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 443–471

    Google Scholar 

  • Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891

    Google Scholar 

  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, Van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Google Scholar 

  • Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Nat Acad Sci USA 106:1368–1373

    Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielson LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Google Scholar 

  • Lidstrom ME (1992) The genetics and molecular biology of methanol-utilizing bacteria. In: Murrell JC, Dalton H (eds) Methane and methanol utilizers. Springer, Boston, MA, pp 183–206

    Google Scholar 

  • Limauro DR, Cannio G, Fiorentino MR, Bartolucci S (2001) Identification and molecular characterization of an endoglucanase gene, CelS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:213–219

    Google Scholar 

  • Linger JG, Vardon DR, Guarnieri MT, Karp EM, Hunsinger GB, Franden MA, et al (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci USA 111:2013–12018

    Google Scholar 

  • Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091

    Google Scholar 

  • Liu K, Atiyeh HK, Tanner RS, Wilkins MR, Huhnke RL (2012) Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour Technol 104:336–341

    Google Scholar 

  • Liu S-Y, RAINEY FA, Morgan HW, MAYER F, Wiegel J (1996) Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46(2):388–396

    Google Scholar 

  • Lopez-Hidalgo AM, Alvarado-Cuevas ZD, De Leon-Rodriguez A (2018) Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy 159:32–41. https://doi.org/10.1016/j.energy.2018.06.124

  • Luli GW, Jarboe L, Ingram LO (2008) The development of ethanologenic bacteria for fuel production. In: Wall JD, Harwood CS, Demain AL (eds) Bioenergy. ASM Press, Washington, DC

    Google Scholar 

  • Luo G, Xie L, Zou Z, Wang W, Zhou Q (2010) Evaluation of pretreatment methods on mixed inoculum forboth batch and continuous thermophilic biohydrogen and biodiesel production from cassava stillage. Bioresour Technol 101:959–964

    Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, AA Romero (2008) Biofuels: a technological perspective. Energy Environ Sci 1:542–564

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Google Scholar 

  • Ma K, Robb FT, Adams MWW (1994) Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Environ Microbiol 60:562–568

    Google Scholar 

  • Machielsen R, Uria AR, Kengen SW, Van-der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238

    Google Scholar 

  • Malhotra R (2007) Road to emerging alternatives-biofuels and hydrogen. J Petrotech Soc 4:34–40

    Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835e44

    Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346e61

    Google Scholar 

  • Marriott PE, Góme LD, McQueen-Mason SJ (2016) Unlocking the potential of lignocellulosic biomass through plant science. New Phytol 209:1366–1381

    Google Scholar 

  • McKeown RM, Scully C, Enright AM, Chinalia FA, Lee C, Mahony T, Collins G, O’Flaherty V (2009) Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. ISME J 3:1231–1242

    Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotechnol 17:477–489

    Google Scholar 

  • Miriam LRM, Raj RE, Kings AJ, Visvanathan MA (2017) Identification and characterization of a novel biodiesel producing halophilic Aphanothece halophytica and its growth and lipid optimization in various media. Energy Convers Manag 141:93–100

    Google Scholar 

  • Miura T, Kita A, Okamura Y, Aki T, Matsumura Y, Tajima T, et al (2015). Improved methane production from brown algae under high salinity by fedbatch acclimation. Bioresour Technol 187:275–281

    Google Scholar 

  • Mukhtar S, Mehnaz, S, Malik KA (2019b) Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crops improvement. Environ Sustain. https://doi.org/10.1007/s42398-019-00061-5

  • Mukhtar S, Mirza BS, Mehnaz S, Mirza MS, Mclean J, Kauser AM (2018) Impact of soil salinity on the structure and composition of rhizosphere microbiome. World J Microbiol Biotechnol 34:136

    Google Scholar 

  • Mukhtar S, Mirza MS, Mehnaz S, Malik KA (2019a) Isolation and characterization of halophilic bacteria from the rhizosphere of halophytes and non-rhizospheric soil samples. Braz J Microbiol 50:85–97

    Google Scholar 

  • Mukhtar S, Ahmad S, Bashir A, Mirza MS, Mehnaz S, Malik KA (2019c) Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:126307

    Google Scholar 

  • Narihiro T, Sekiguchi Y (2007) Microbial communities in anaerobic digestion processes for waste and wastewater treatment: A microbiological update. Curr Opin Biotechnol 18:273–278

    Google Scholar 

  • Nguyen DM, Lipscomb GL, Schut GJ, Vaccaro BJ, Basen M, Kelly RM, Adams MW (2015) Temperature‐dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metab Eng 34:71–79

    Google Scholar 

  • Nozhevnikova AN, Zepp K, Vazquez F, Zehnder AJB, Holliger C (2003) Evidence for the existence of psychrophilic methanogenic communities in anoxic sediments of deep lakes. Appl Environ Microbiol 69:1832–1835

    Google Scholar 

  • Park HJ, Jeon JH, Kang SG, Lee JH, Lee SA, Kim HK (2007) Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein Expression Purif 52:340–347

    Google Scholar 

  • Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O (2017) Sulfolobus—A potential key organism in future biotechnology. Front Microbiol 8:2474

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

  • Rashid N, Aslam M (2019) An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Folia Microbiol. https://doi.org/10.1007/s12223-019-00730-2

  • Rasoul-Amini S, Mousavi P, Montazeri-Najafabady N, Mobasher MA, Mousavi SB, et al (2014) Biodiesel properties of native strain of Dunaliella salina. Int J Renew Energy Res 4:39–41

    Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019a) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019b) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019c) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020) New and future developments in microbial biotechnology and bioengineering: Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rathore D, Singh A, Dahiya D, Nigam PS (2019) Sustainability of biohydrogen as fuel: Present scenario and future perspective. AIMS Energy 7:1–19

    Google Scholar 

  • Rezaei S, Shahverdi AR, Faramarzi MA (2017) Isolation, one-step affinity purification, and characterization of a polyextremo-tolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol 230:67–75

    Google Scholar 

  • Rogers PLK, Lee J, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84

    Google Scholar 

  • Ronnow PH, Gunnarsson LAH (1981) Sulfide dependent methane production and growth of a thermophilic methanogenic bacterium. Appl Environ Microbiol 42:580–584

    Google Scholar 

  • Sanchez OJ, Cardona CA (2006) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Google Scholar 

  • Schelert J, Drozda M, Dixit V, Dillman A, Blum P (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150

    Google Scholar 

  • Schicho RN, Ma K, Adams MW, Kelly RM (1993) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175:1823

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol MolBiol Rev 61:262–280

    Google Scholar 

  • Sedlak M, Ho NWY (2004) Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of co-fermenting glucose and xylose. Appl Biochem Biotechnol 114:403–416

    Google Scholar 

  • Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19

    Google Scholar 

  • Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320

    Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Ann Rev Biochem 75:403–433

    Google Scholar 

  • Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oilsand their esters as the substitute of diesel: a review. Renew Sustain Energy Rev 14:200–216

    Google Scholar 

  • Singh BP, Panigrahi MR, Ray HS (2000) Review of biomass as a source of energy for India. Energy Sour 22:649–658

    Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003e12

    Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, High quality draft genome sequence of a plant growth promoting and Cold Active Enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. https://doi.org/10.1186/s40793-016-0176-4

  • Sokolova T, Gonzalez J, Kostrikina N, Chernyh N, Tourova T, Kato C, Bonch-Osmolovskaya E, Robb F (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

    Google Scholar 

  • Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32:283–289

    Google Scholar 

  • Sonntag F, Buchhaupt M, Schrader J (2014) Thioesterases for ethylmalonylCoA pathway derived dicarboxylic acid production in Methylobacterium extorquens AM1. Appl Microbiol Biotechnol 98:4533–44

    Google Scholar 

  • Spolaore P, Cassan CJ, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Google Scholar 

  • Srinivas TNR, Kumar PA, SasikalaCh, Sproer C, Ramana CV (2008) Rhodobacterovatus sp. nov., a phototrophic alphaproteobacterium isolated from a polluted pond. Int J Syst Evol Microbiol 58:1379e83

    Google Scholar 

  • Stekhanova TN, Mardanov AV, Bezsudnova EY, Gumerov VM, Ravin NV, Skryabin KG, Popov VO (2010) Expression, purification and crystallization of a thermostable short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricus. Appl Environ Microbiol 76:4096–4108

    Google Scholar 

  • Sun X, Robert RG (2003) Synthesis of higher alcohols in a slurry reactor with cesium‐promoted zinc chromite catalyst in decahydronaphthalene. Appl Catal A Gen 247:133–142

    Google Scholar 

  • Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095

    Google Scholar 

  • Takeuchi M, Kamagata Y, Oshima K, Hanada S, Tamaki H, Marumo K, et al (2014) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int J Syst Evol Microbiol 64 3240–3246

    Google Scholar 

  • Tan HT, Lee KT, Mohamed AR (2010) Second‐generation bio‐ethanol (SGB) from Malaysian palm empty fruit bunch: Energy and exergy analyses. Bioresour Technol 101:5719–5727

    Google Scholar 

  • Tandon P, Jin Q (2017) Microalgae culture enhancement through key microbial approaches. Renew Sustain Energy Rev 80:1089–1099

    Google Scholar 

  • Taroepratjeka DAH, Imai T, Chairattanamanokorn P, Reungsang A (2019) Investigation of hydrogen-producing ability of extremely halotolerant bacteria from a salt pan and salt-damaged soil in Thailand. Int J Hydrogen Energy 44:3407–3413

    Google Scholar 

  • Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405

    Google Scholar 

  • Tollefson J (2008) Energy: not your father’s biofuels. Nature 451:880–883

    Google Scholar 

  • Tutino ML, di Prisco G, Marino G, de Pascale D (2009) Cold-adapted esterases and lipases: from fundamentals to application. Protein Pept Lett 16:1172–1180

    Google Scholar 

  • Ueda M, Goto T, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2010) A novel cold-adapted cellulase complex from Eiseniafoetida: Characterization of a multienzyme complex with carboxymethylcellulase, betaglucosidase, beta-1,3 glucanase, and beta-xylosidase. Comp Biochem Physiol B Biochem Mol Biol 157:26–32

    Google Scholar 

  • Uzoejinwa BB, He X, Wang S, Abomohra AE-F, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Conv Manag 163:468–492

    Google Scholar 

  • Van-der Oost J, Voorhorst WG, Kengen SW, Geerling AC, Wittenhorst V, Gueguen Y, de Vos WM (2001) Genetic and biochemical characterization of a short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 268:3062–8

    Google Scholar 

  • Varel V, Chen T, Hashimoto A (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Con Recy 1:19–26

    Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Google Scholar 

  • Wagner ID, Wiegel J (2008). Diversity of thermophilic anaerobes. In: Incredible anaerobes: From physiology to genom ics fuels. Annals of the New York Academy of Sciences, vol 1125, pp 1–43

    Google Scholar 

  • Watanabe N, Ota Y, Minoda Y, Yamada K (1977) Isolation and identification of alkaline lipase-producing microorganisms, culture conditions and some properties of crude enzymes. Agric Biol Chem 41:1353–1358

    Google Scholar 

  • Wei P, Bai L, Song W, Hao G (2009) Characterization of two soil metagenome-derived lipases with high specificity for p-nitrophenyl palmitate. Arch Microbiol 191:233–240

    Google Scholar 

  • Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P (2014) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation fro m alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact 13:92

    Google Scholar 

  • Weng JK, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Google Scholar 

  • Wichlacz PL, Unz RF, Langworthy TA (1986) Acidiphiliumangustum sp. nov., Acidiphiliumfacilis sp. nov., Acidiphiliumrubrum sp. nov. Acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int J Syst Bacteriol 36:197–201

    Google Scholar 

  • Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a New Genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42(2):263–269

    Google Scholar 

  • Wouter WH, Toirkens MJ, Wu Q, Pronk JT, Van Maris AJA (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914

    Google Scholar 

  • Wu X, Zhang C, Orita I, Imanaka C, Fukui T (2013) Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols. Appl Environ Microbiol 79:2209–2217

    Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R et al (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043 https://doi.org/10.2478/s11756-019-00259-2

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Yadav N, Sachan SG, Saxena AK (2019c) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor and Francis, Boca Raton, USA

    Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, et al (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239–1247

    Google Scholar 

  • Yun Y-M, Lee M-K, Im S-W, Marone A, Trably E, Shin S-R, Kim M-G, Cho S-K, Kim D-H (2018) Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol 248:79–87

    Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Google Scholar 

  • Zazil DAC, Angel MLH, Leandro GO, Edén OC, José TOS, et al (2015) Biohydrogen production using psychrophilic bacteria isolated from Antarctica. Int J Hydrog Energy 40:7586–7592

    Google Scholar 

  • Zhang G, Jiang N, Liu X, Dong X (2008) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, Methanolobuspsychrophilus sp. nov., prevalent in Zoige wetland of Tibetan plateau. Appl Environ Microbiol 74:6114–6120

    Google Scholar 

  • Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukhtar, S., Aslam, M. (2020). Biofuel Synthesis by Extremophilic Microorganisms. In: Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R. (eds) Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-53933-7_7

Download citation

Publish with us

Policies and ethics