Skip to main content

Photosynthetic Production of Ethanol Using Genetically Engineered Cyanobacteria

  • Chapter
  • First Online:
Biofuels Production – Sustainability and Advances in Microbial Bioresources

Abstract

The increasing global energy demand and the advance of new technologies to produce biofuel from CO2 led to the expansion in research using genetically modified cyanobacteria as biocatalyst to produce ethanol. The expression of the enzymes pyruvate descarboxylase (PDC) and alcohol dehydrogenase (ADH) from Zymomonas mobilis in cyanobacteria is the main strategy used to redirect the carbon fixed by photosynthesis into ethanol. This chapter emphasizes the genetic modification used in metabolic engineering and their effects on ethanol production, as well as, the bottlenecks of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Hashesh M, Wang R, Hallenbeck PC (2011) Metabolic engineering in dark fermentative hydrogen production; theory and practice. Biores Technol 102:8414–8422

    CAS  Google Scholar 

  • Abramson BW, Lensmire J, Lin Y, Jennings E, Ducat DC (2018) Redirecting carbon to bioproduction via a growth arrest switch in a sucrose-secreting cyanobacterium. Algal Res 33:248–255

    Google Scholar 

  • AFDC–Alternative Fuels Data Center (2019). Available in: https://afdc.energy.gov/data/10331, https://afdc.energy.gov/fuels/ethanol_production.html, https://afdc.energy.gov/fuels/ethanol_fuel_basics.html

  • Algenol Biofuels, Inc (2013) Genetically enhanced Cyanobacteria for the production of a first chemical compound harbouring Zn2+, Co2+ or Ni2+ -inducible promoters, Patent Publication Number: WO2013098267A1

    Google Scholar 

  • Algenol Biofuels, Inc (2014a) Cyanobacterium sp. for Production of Compounds, Patent application number: US20140178958A1

    Google Scholar 

  • Algenol Biofuels, Inc (2014b) Genetically Enhanced Cyanobacteria Lacking Functional Genes Conferring Biocide Resistance for the Production of Chemical Compounds, Patent application number: US20140154762A1

    Google Scholar 

  • Algenol Biofuels, Inc. (2012) Selection of ADH in genetically modified Cyanobacteria for the production of ethanol, Official Gazette of the United States Patent and Trademark Office Patents, Patent Publication Number: US8163516B2

    Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Lindblad P, Mattos MJT (2009) Energy biotechnology with cyanobcteria. Curr Opin Biotechnol 20:257–263

    CAS  PubMed  Google Scholar 

  • ANP–Agência Nacional do Petróleo, Gás natural e Biocombustíveis (2019). Available in: http://www.anp.gov.br/,in

  • Biofuelwatch (2017) Algenol: Case Study of an Unsuccessful Algae Biofuels Venture (2019). Available in: https://www.biofuelwatch.org.uk/2017/algenol-report/

  • Braakman R (2019) Evolution of cellular metabolism and the rise of a globally productive biosphere. Free Radic Biol Med 140:172–187

    CAS  PubMed  Google Scholar 

  • Cardoso V, Romão BB, Silva FTM, Santos JG, Batista FRX, Ferreira JS (2014) Hydrogen production by dark fermentation. Chem Eng Trans 38:481–486

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Chow T, Su H, Tsai T, Chou H, Lee T, Chang J (2015) Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Biores Technol 184:33–41

    CAS  Google Scholar 

  • Cohen Y, Jörgensen BB, Revsbeck NP, Poplawskil R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51:398–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RC, Sodré JR (2010) Hydrous ethanol versus Gasoline-ethanol blend: Engine performance and emissions. Fuel 89:287–293

    CAS  Google Scholar 

  • Deng M, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter J, Fu P (2009) Metabolic engineering of Cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    CAS  Google Scholar 

  • Dienst D, Georg J, Abts T, Jakorew L, Kuchmina E, Borner T, et al (2014) Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnol Biofuels 7:21

    Google Scholar 

  • Du W, Liang F, Duan Y, Tan X, Lu X (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Eng 19:17–25

    CAS  PubMed  Google Scholar 

  • Dvořák P, Poulíčková A, Hašler P, Belli M, Casamatta DA, Papini A (2015) Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers Conserv 24:739–757

    Google Scholar 

  • Frigaard N (2018) Sugar and sugar alcohol production in genetically modified cyanobacteria. In: Holban AM, Grumezescu AM (eds) Genetically engineered foods. Academic Press, Handbook of Food Bioengineering 6:31–47

    Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered Cyanobacteria. Energy Environ Sci 5:9857–9865

    CAS  Google Scholar 

  • Hitzfeld BC, Höger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment and human risk assessment. Environ Heath Perspect 108:113–122

    CAS  Google Scholar 

  • Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Gansau JA, Ravindra P (2016) A review on third generation bioethanol feedstock. Renew Sustain Energy Rev 65:756–769

    CAS  Google Scholar 

  • Joule Unlimited Technologies Inc (2012) Metabolic Switch, Patent Publication Number: US20120164705A1

    Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C et al (2019a) Technologies for biofuel production: current development, challenges, and future prospects. In: Rastegari AA, Yadav AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. springer international publishing, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

  • Kumar S, Sharma S, Thakur S, Mishra T, Negi P, Mishra S et al (2019) Bioprospecting of microbes for biohydrogen production: current status and future challenges. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 443–471

    Google Scholar 

  • Lau N, Matsui M, Abdulah A (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res Int 2015:1–9

    Google Scholar 

  • Lea-Smith DL, Howe DJ, Love J, Bryant JA (2017) The use of cyanobacteria for biofuel production. In: Love J, Bryant JA (eds) Biofuels and bioenergy. Wiley, New York, pp 143–155

    Google Scholar 

  • Liang F, Englund E, Lindberg P, Lindblad P (2018) Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab Eng 46:51–59

    CAS  PubMed  Google Scholar 

  • Luan G, Qi Y, Wang M, Li Z, Duan Y, Tan X et al (2015) Combinatory strategy for characterizing and understanding the ethanol synthesis pathway in cyanobacteria cell factories. Biotechnol Biofuels 8:184

    PubMed  PubMed Central  Google Scholar 

  • Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK et al (2016) Microalgae biofuels as an alternative to fossil fuel for Power generation. Renew Sust Energ Rev 58:180–197

    Google Scholar 

  • Molina GE, Belarbi EH, Fernández FGA, Medina AR, Chisty Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Google Scholar 

  • Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363

    CAS  PubMed  Google Scholar 

  • Pamar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Biores Technol 102:10163–10172

    Google Scholar 

  • Pierobon SC, Cheng X, Graham PJ, Nguyen B, Karalolis EG, Sinton D (2018) Emerging microalgae technology: a review. Sust Energ Fuels 2:13–38

    CAS  Google Scholar 

  • Rai PK, Singh SP (2016) Integrated dark- and photo- fermentation: recent advances and provisions for improvement. Int J Hydrogen Energ 41:19957–19971

    CAS  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

  • Rastegari AA, Yadav AN, Yadav N (2020) New and Future Developments in Microbial Biotechnology and Bioengineering: Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Diversity and Functional Perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Gupta A (2019a) Prospects of renewable bioprocessing in future energy systems. Springer International Publishing, Cham

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019b) Genetic Manipulation of Secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019c) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

  • Savakis P, Hellingwerf KL (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 33:8–14

    CAS  PubMed  Google Scholar 

  • Silva CEF, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842

    CAS  Google Scholar 

  • Silva CEF, Bertucco A (2017) Dilute acid hydrolysis of microalgal biomass for bioethanol production: an accurate kinetic model of biomass solubilization, sugars hydrolysis and nitrogen/ash balance. React Kinet, Mech Catal 122:1095–1114

    CAS  Google Scholar 

  • Silva CEF, Cerqueira RBO, Monteiro CC, Oliveira CF, Tonholo J (2019) Microalgae and wastewaters: from ecotoxicological interactions to produce a carbohydrate-rich biomass towards biofuel application. In: Gupta S, Bux F (eds) Application of microalgae in wastewater treatment. Springer, Cham, pp 495–529

    Google Scholar 

  • Silva CEF, Meneghello D, Abud AKS, Bertucco A (2018a) Pretreatment of microalgal biomass to improve the enzymatic hydrolysis of carbohydrates by ultrasonication: Yield versus energy consumption. J King Saud Univ Sci 32:606–613

    Google Scholar 

  • Silva CEF, Meneghello D, Bertucco A (2018b) A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. Biocatal Agric Biotechnol 14:172–182

    Google Scholar 

  • Silva CEF, Sforza E (2016) Carbohydrate productivity in continuous reactor under nitrogen limitation: effect of light and residence time on nutrient uptake in Chlorella vulgaris. Process Biochem 51:2112–2118

    Google Scholar 

  • Silva CEF, Sforza E, Bertucco A (2017) Effects of pH and Carbon Source on Synechococcus PCC 7002 cultivation: biomass and carbohydrate production with different strategies for pH control. Appl Biochem Biotechnol 181:682–698

    Google Scholar 

  • Silva CEF, Sforza E, Bertucco A (2018c) Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus. J Appl Phycol 30:261–270

    Google Scholar 

  • Singh V, Chaudhary DK, Mani I, Dhar PK (2016) Recent advances and challenges of use of cyanobacteria towards the production of biofuels. Renew Sust Energ Rev 60:1–10

    Google Scholar 

  • Smachetti MES, Cenci MP, Salerno GL, Curatti L (2019) Ethanol and protein production from minimally processed biomass of a genetically-modified cyanobacterium over-accumulating sucrose. Biores Technol Rep 5:230–237

    Google Scholar 

  • Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–31

    CAS  Google Scholar 

  • Subramanian KA (2017) Biofueled Reciprocating Internal Combustion Engines.CRC Press: Taylor & Francis Group.ISBN 9781315116785

    Google Scholar 

  • Vijay D, Akhtar MK, Hes WR (2019) Genetic and metabolic advances in the engineering of cyanobacteria. Curr Opin Biotechnol 59:150–156

    CAS  PubMed  Google Scholar 

  • Wang Y, Ho SH, Cheng CL, Guo WQ, Nagarajan D, Lee DJ, Chang JS (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Biores Technol 222:485–497

    CAS  Google Scholar 

  • Wang M, Luan G, Lu X (2019) Systematic identification of a neutral site on chromosome of Synechococcus sp. PCC7002, a promising photosynthetic chassis strain. J Biotechnol 295:37–40

    CAS  PubMed  Google Scholar 

  • Waterbury JB (2006) The cyanobacteria: isolation, purification and identification. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes. Springer, New York, NY

    Google Scholar 

  • Xu Y, Guerra LT, Li Z, Ludwig M, Dismukes GC, Bryant DA (2013) Altered carbohydrate metabolism in glycogen synthase mutants of Synechococcus sp. strain PCC 7002: Cell factories for soluble sugars. Metab Eng 16:56–67

    CAS  PubMed  Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor and Francis, Boca Raton, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. De Farias Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Andrade, F.P., De Sá Filho, M.L.F., Araújo, R.R.L., Ribeiro, T.R.M., Silva, A.E., De Farias Silva, C.E. (2020). Photosynthetic Production of Ethanol Using Genetically Engineered Cyanobacteria. In: Yadav, A.N., Rastegari, A.A., Yadav, N., Gaur, R. (eds) Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-53933-7_6

Download citation

Publish with us

Policies and ethics