Skip to main content

Malignant-Primary (MAL-P) (Mesothelioma)

  • Chapter
  • First Online:
The International System for Serous Fluid Cytopathology

Abstract

The diagnosis of malignant mesothelioma by cytology has been accepted in the last decade and guidelines for the diagnosis were previously published. This chapter focuses on the diagnosis and reporting of malignant mesothelioma by cytology and represents the consensus view of the authors and contributors who make the diagnosis of definitive malignant mesothelioma by effusion cytology on a regular basis. This chapter elaborates on the general approach to mesothelial effusions, key morphologic criteria of malignancy, appropriate utilization of immunohistochemistry, and the role of molecular and soluble biomarkers. A practical guideline is provided for the suggested diagnosis based on the constellation of findings. Fluids with atypical mesothelial cells can be cytologically diagnosed as malignant, suspicious, or atypical based on the cytologic findings and/or ancillary tests. The explanatory notes that follow provide detailed discussions of the differential diagnosis, diagnostic pitfalls, and useful ancillary studies to achieve an accurate diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hjerpe A, Ascoli V, Bedrossian CW, et al. Guidelines for the cytopathologic diagnosis of epithelioid and mixed-type malignant mesothelioma. Complementary statement from the International Mesothelioma Interest Group, also endorsed by the International Academy of Cytology and the Papanicolaou Society of Cytopathology. Acta Cytol. 2015;43(7):563–76.

    Google Scholar 

  2. Hjerpe A, Dobra K. Comments on the recently published “guidelines for the cytopathologic diagnosis of epithelioid and mixed-type malignant mesothelioma”. Cancer Cytopathol. 2015;123(8):449–53.

    Article  Google Scholar 

  3. Paintal A, Raparia K, Zakowski MF, Nayar R. The diagnosis of malignant mesothelioma in effusion cytology: a reappraisal and results of a multi-institution survey. Cancer Cytopathol. 2013;121(12):703–7.

    Article  Google Scholar 

  4. Segal A, Sterrett GF, Frost FA, et al. A diagnosis of malignant pleural mesothelioma can be made by effusion cytology: results of a 20 year audit. Pathology. 2013;45(1):44–8.

    Article  Google Scholar 

  5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  6. Turkey Asbestos Control Strategic Plan Final Report. Turk Thorac J. 2015;16(Suppl 2):S27–52.

    Google Scholar 

  7. Bedrossian CW. Asbestos-related diseases: a historical and mineralogic perspective. Semin Diagn Pathol. 1992;9(2):91–6.

    CAS  Google Scholar 

  8. Davidson B, Firat P, Michael CW. Serous effusions. 2nd ed. Cham, Switzerland: Springer; 2018.

    Book  Google Scholar 

  9. Michael CW, Chhieng DC, Bedrossian CWM, editors. Cytohistology of the serous membranes. Cambridge, UK: Cambridge University Press; 2015.

    Google Scholar 

  10. Boon ME, van Velzen D, Ruinaard C, Veldhuizen RW. Analysis of number, size and distribution patterns of lipid vacuoles in benign and malignant mesothelial cells. Anal Quant Cytol. 1984;6(4):221–6.

    CAS  Google Scholar 

  11. Naylor B. The exfoliative cytology of diffuse malignant mesothelioma. J Pathol Bacteriol. 1963;86:293–8.

    Article  CAS  Google Scholar 

  12. Whitaker D. Cell aggregates in malignant mesothelioma. Acta Cytol. 1977;21(2):236–9.

    CAS  Google Scholar 

  13. Leong AS, Stevens MW, Mukherjee TM. Malignant mesothelioma: cytologic diagnosis with histologic, immunohistochemical, and ultrastructural correlation. Semin Diagn Pathol. 1992;9(2):141–50.

    CAS  Google Scholar 

  14. Tao LC. The cytopathology of mesothelioma. Acta Cytol. 1979;23(3):209–13.

    CAS  Google Scholar 

  15. Whitaker D, Shilkin KB. The cytology of malignant mesothelioma in western Australia. Acta Cytol. 1978;22(2):67–70.

    CAS  Google Scholar 

  16. Nguyen GK. Cytopathology of pleural mesotheliomas. Amer J Clin Pathol. 2000;114(Suppl):S68–81.

    Google Scholar 

  17. Kho-Duffin J, Tao LC, Cramer H, Catellier MJ, Irons D, Ng P. Cytologic diagnosis of malignant mesothelioma, with particular emphasis on the epithelial noncohesive cell type. Diagn Cytopathol. 1999;20(2):57–62.

    Article  CAS  Google Scholar 

  18. Chen L, Caldero SG, Gmitro S, Smith ML, De Petris G, Zarka MA. Small orangeophilic squamous-like cells: an underrecognized and useful morphological feature for the diagnosis of malignant mesothelioma in pleural effusion cytology. Cancer Cytopathol. 2014;122(1):70–5.

    Article  CAS  Google Scholar 

  19. Whitaker D, Henderson DW, Shilkin KB. The concept of mesothelioma in situ: implications for diagnosis and histogenesis. Semin Diagn Pathol. 1992;9(2):151–61.

    CAS  Google Scholar 

  20. Churg A, Hwang H, Tan L, et al. Malignant mesothelioma in situ. Histopathology. 2018;72(6):1033–8.

    Article  Google Scholar 

  21. Negi Y, Kuribayashi K, Funaguchi N, et al. Early-stage clinical characterization of malignant pleural mesothelioma. In Vivo. 2018;32(5):1169–74.

    Article  CAS  Google Scholar 

  22. Hjerpe A, Abd-Own S, Dobra K. Cytopathologic diagnosis of epithelioid and mixed-type malignant mesothelioma: ten years of clinical experience in relation to international guidelines. Arch Pathol Lab Med. 2018;142(8):893–901.

    Article  CAS  Google Scholar 

  23. Rakha EA, Patil S, Abdulla K, Abdulkader M, Chaudry Z, Soomro IN. The sensitivity of cytologic evaluation of pleural fluid in the diagnosis of malignant mesothelioma. Diagn Cytopathol. 2010;38(12):874–9.

    Article  CAS  Google Scholar 

  24. Henderson DW, Reid G, Kao SC, van Zandwijk N, Klebe S. Challenges and controversies in the diagnosis of mesothelioma: Part 1. Cytology-only diagnosis, biopsies, immunohistochemistry, discrimination between mesothelioma and reactive mesothelial hyperplasia, and biomarkers. J Clin Pathol. 2013;66(10):847–53.

    Article  Google Scholar 

  25. Huang CC, Attele A, Michael CW. Cytomorphologic features of metastatic urothelial carcinoma in serous effusions. Diagn Cytopathol. 2013;41(7):569–74.

    Article  Google Scholar 

  26. Huang CC, Michael CW. Deciduoid mesothelioma: cytologic presentation and diagnostic pitfalls. Diagn Cytopathol. 2013;41(7):629–35.

    Article  Google Scholar 

  27. Jing X, Li QK, Bedrossian U, Michael CW. Morphologic and immunocytochemical performances of effusion cell blocks prepared using 3 different methods. Am J Clin Pathol. 2013;139(2):177–82.

    Article  Google Scholar 

  28. Fetsch PA, Simsir A, Brosky K, Abati A. Comparison of three commonly used cytologic preparations in effusion immunocytochemistry. Diag Cytopathol. 2002;26(1):61–6.

    Article  Google Scholar 

  29. McCroskey Z, Staerkel G, Roy-Chowdhuri S. Utility of BRCA1-associated protein 1 immunoperoxidase stain to differentiate benign versus malignant mesothelial proliferations in cytologic specimens. Diag Cytopathol. 2017;45(4):312–9.

    Article  Google Scholar 

  30. Hwang HC, Sheffield BS, Rodriguez S, et al. Utility of BAP1 immunohistochemistry and p16 (CDKN2A) FISH in the diagnosis of malignant mesothelioma in effusion cytology specimens. Am J Surg Pathol. 2016;40(1):120–6.

    Article  Google Scholar 

  31. Cozzi I, Oprescu FA, Rullo E, Ascoli V. Loss of BRCA1-associated protein 1 (BAP1) expression is useful in diagnostic cytopathology of malignant mesothelioma in effusions. Diag Cytopathol. 2018;46(1):9–14.

    Article  Google Scholar 

  32. Cigognetti M, Lonardi S, Fisogni S, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28(8):1043–57.

    Article  CAS  Google Scholar 

  33. Hatem L, McIntire PJ, He B, et al. The role of BRCA1-associated protein 1 in the diagnosis of malignant mesothelioma in effusion and fine-needle aspiration cytology. Diag Cytopathol. 2019;47(3):160–5.

    Article  Google Scholar 

  34. Carbone M, Shimizu D, Napolitano A, et al. Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma. Oncotarget. 2016;7(37):59314–21.

    Article  Google Scholar 

  35. Owen D, Sheffield BS, Ionescu D, Churg A. Loss of BRCA1-associated protein 1 (BAP1) expression is rare in non-small cell lung cancer. Hum Pathol. 2017;60:82–5.

    Article  CAS  Google Scholar 

  36. Hida T, Hamasaki M, Matsumoto S, et al. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer. 2017;104:98–105.

    Article  Google Scholar 

  37. Berg KB, Churg A. GATA3 immunohistochemistry for distinguishing sarcomatoid and desmoplastic mesothelioma from sarcomatoid carcinoma of the lung. Am J Surg Pathol. 2017;41(9):1221–5.

    Article  Google Scholar 

  38. Kinoshita Y, Hida T, Hamasaki M, et al. A combination of MTAP and BAP1 immunohistochemistry in pleural effusion cytology for the diagnosis of mesothelioma. Cancer Cytopathol. 2018;126(1):54–63.

    Article  CAS  Google Scholar 

  39. Berg KB, Dacic S, Miller C, Cheung S, Churg A. Utility of methylthioadenosine phosphorylase compared with BAP1 immunohistochemistry, and CDKN2A and NF2 fluorescence in situ hybridization in separating reactive mesothelial proliferations from epithelioid malignant mesotheliomas. Arch Pathol Lab Med. 2018;142(12):1549–53.

    Article  CAS  Google Scholar 

  40. Creaney J, Segal A, Sterrett G, et al. Overexpression and altered glycosylation of MUC1 in malignant mesothelioma. Br J Cancer. 2008;98(9):1562–9.

    Article  CAS  Google Scholar 

  41. Saad RS, Cho P, Liu YL, Silverman JF. The value of epithelial membrane antigen expression in separating benign mesothelial proliferation from malignant mesothelioma: a comparative study. Diag Cytopathol. 2005;32(3):156–9.

    Article  Google Scholar 

  42. Attanoos RL, Griffin A, Gibbs AR. The use of immunohistochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, platelet-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology. 2003;43(3):231–8.

    Article  CAS  Google Scholar 

  43. Shen J, Pinkus GS, Deshpande V, Cibas ES. Usefulness of EMA, GLUT-1, and XIAP for the cytologic diagnosis of malignant mesothelioma in body cavity fluids. Am J Clin Pathol. 2009;131(4):516–23.

    Article  CAS  Google Scholar 

  44. Hyun TS, Barnes M, Tabatabai ZL. The diagnostic utility of D2-40, calretinin, CK5/6, desmin and MOC-31 in the differentiation of mesothelioma from adenocarcinoma in pleural effusion cytology. Acta Cytol. 2012;56(5):527–32.

    Article  CAS  Google Scholar 

  45. Hasteh F, Lin GY, Weidner N, Michael CW. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118(2):90–6.

    Article  Google Scholar 

  46. Tsuji S, Washimi K, Kageyama T, et al. HEG1 is a novel mucin-like membrane protein that serves as a diagnostic and therapeutic target for malignant mesothelioma. Sci Rep. 2017;7(3):45768.

    Article  Google Scholar 

  47. Pu RT, Pang Y, Michael CW. Utility of WT-1, p63, MOC31, mesothelin, and cytokeratin (K903 and CK5/6) immunostains in differentiating adenocarcinoma, squamous cell carcinoma, and malignant mesothelioma in effusions. Diagn Cytopathol. 2008;36(1):20–5.

    Article  Google Scholar 

  48. Hattori Y, Yoshida A, Sasaki N, Shibuki Y, Tamura K, Tsuta K. Desmoplastic small round cell tumor with sphere-like clusters mimicking adenocarcinoma. Diagn Cytopathol. 2015;43(3):214–7.

    Article  Google Scholar 

  49. Bassarova AV, Nesland JM, Davidson B. D2-40 is not a specific marker for cells of mesothelial origin in serous effusions. Am J Surg Pathol. 2006;30(7):878–82.

    Article  Google Scholar 

  50. Jo VY, Cibas ES, Pinkus GS. Claudin-4 immunohistochemistry is highly effective in distinguishing adenocarcinoma from malignant mesothelioma in effusion cytology. Cancer Cytopathol. 2014;122(4):299–306.

    Article  Google Scholar 

  51. Ordonez NG. Value of claudin-4 immunostaining in the diagnosis of mesothelioma. Am J Clin Pathol. 2013;139(5):611–9.

    Article  CAS  Google Scholar 

  52. Ordonez NG. Application of immunohistochemistry in the diagnosis of epithelioid mesothelioma: a review and update. Hum Pathol. 2013;44(1):1–19.

    Article  CAS  Google Scholar 

  53. Richter G, Heidersdorf H, Hirschfeld D, Krebbel F. Positive TTF-1 expression in malignant mesothelioma: a case report. Am J Case Rep. 2016;17:133–6.

    Article  Google Scholar 

  54. Miettinen M, McCue PA, Sarlomo-Rikala M, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38(1):13–22.

    Article  Google Scholar 

  55. Manur R, Lamzabi I. Aberrant cytokeratin 20 reactivity in epithelioid malignant mesothelioma: a case report. Appl Immunohistochem Mol Morphol. 2017. Feb;28 https://doi.org/10.1097/PAI.0000000000000504.

  56. Mansour MSI, Seidal T, Mager U, Baigi A, Dobra K, Dejmek A. Determination of PD-L1 expression in effusions from mesothelioma by immuno-cytochemical staining. Cancer Cytopathol. 2017;125(12):908–17.

    Article  CAS  Google Scholar 

  57. Chapel DB, Stewart R, Furtado LV, Husain AN, Krausz T, Deftereos G. Tumor PD-L1 expression in malignant pleural and peritoneal mesothelioma by Dako PD-L1 22C3 pharmDx and Dako PD-L1 28-8 pharmDx assays. Hum Pathol. 2019;87:11–7.

    Article  CAS  Google Scholar 

  58. Chou A, Toon CW, Clarkson A, Sheen A, Sioson L, Gill AJ. The epithelioid BAP1-negative and p16-positive phenotype predicts prolonged survival in pleural mesothelioma. Histopathology. 2018;72(3):509–15.

    Article  Google Scholar 

  59. McGregor SM, McElherne J, Minor A, et al. BAP1 immunohistochemistry has limited prognostic utility as a complement of CDKN2A (p16) fluorescence in situ hybridization in malignant pleural mesothelioma. Hum Pathol. 2017;60(2):86–94.

    Article  CAS  Google Scholar 

  60. Guazzelli A, Meysami P, Bakker E, et al. BAP1 status determines the sensitivity of malignant mesothelioma cells to gemcitabine treatment. Int J Mol Sci. 2019;20(2):pii: E429.

    Article  CAS  Google Scholar 

  61. Kumar N, Alrifai D, Kolluri KK, et al. Retrospective response analysis of BAP1 expression to predict the clinical activity of systemic cytotoxic chemotherapy in mesothelioma. Lung Cancer. 2019;127(1):164–6.

    Article  Google Scholar 

  62. Husain AN, Colby TV, Ordonez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2018;142(1):89–108.

    Article  CAS  Google Scholar 

  63. Illei PB, Ladanyi M, Rusch VW, Zakowski MF. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer. 2003;99(1):51–6.

    Article  CAS  Google Scholar 

  64. Flores-Staino C, Darai-Ramqvist E, Dobra K, Hjerpe A. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer. 2010;68(1):39–43.

    Article  Google Scholar 

  65. Factor RE, Dal Cin P, Fletcher JA, Cibas ES. Cytogenetics and fluorescence in situ hybridization as adjuncts to cytology in the diagnosis of malignant mesothelioma. Cancer. 2009;117(4):247–53.

    Google Scholar 

  66. Onofre FB, Onofre AS, Pomjanski N, Buckstegge B, Grote HJ, Bocking A. 9p21 deletion in the diagnosis of malignant mesothelioma in serous effusions additional to immunocytochemistry, DNA-ICM, and AgNOR analysis. Cancer. 2008;114(3):204–15.

    Article  Google Scholar 

  67. Savic S, Franco N, Grilli B, et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest. 2010;138(1):137–44.

    Article  CAS  Google Scholar 

  68. Matsumoto S, Nabeshima K, Kamei T, et al. Morphology of 9p21 homozygous deletion-positive pleural mesothelioma cells analyzed using fluorescence in situ hybridization and virtual microscope system in effusion cytology. Cancer Cytopathol. 2013;121(8):415–22.

    Article  Google Scholar 

  69. Hiroshima K, Wu D, Hasegawa M, et al. Cytologic differential diagnosis of malignant mesothelioma and reactive mesothelial cells with FISH analysis of p16. Diagn Cytopathol. 2016;44(7):591–8.

    Article  Google Scholar 

  70. Walts AE, Hiroshima K, McGregor SM, Wu D, Husain AN, Marchevsky AM. BAP1 immunostain and CDKN2A (p16) FISH analysis: clinical applicability for the diagnosis of malignant mesothelioma in effusions. Diagn Cytopathol. 2016;44(7):599–606.

    Article  Google Scholar 

  71. Blix G. Hyaluronic acid in the pleural and peritoneal fluids from a case of mesothelioma. Acta Soc Med Ups. 1951;56(1–2):47–50.

    CAS  Google Scholar 

  72. Harington JS, Wagner JC, Smith M. The detection of hyaluronic acid in pleural fluids of cases with diffuse pleural mesotheliomas. Br J Exp Pathol. 1963;44:81–3.

    CAS  Google Scholar 

  73. Friman C, Hellstrom PE, Juvani M, Riska H. Acid glycosaminoglycans (mucopolysaccharides) in the differential diagnosis of pleural effusion. Clin Chim Acta. 1977;76(3):357–61.

    Article  CAS  Google Scholar 

  74. Hjerpe A. Liquid-chromatographic determination of hyaluronic acid in pleural and ascitic fluids. Clin Chem. 1986;32(6):952–6.

    Article  CAS  Google Scholar 

  75. Thylen A, Wallin J, Martensson G. Hyaluronan in serum as an indicator of progressive disease in hyaluronan-producing malignant mesothelioma. Cancer. 1999;86(10):2000–5.

    Article  CAS  Google Scholar 

  76. Chichibu K, Matsuura T, Shichijo S, Yokoyama MM. Assay of serum hyaluronic acid in clinical application. Clin Chim Acta. 1989;181(3):317–23.

    Article  CAS  Google Scholar 

  77. Nurminen M, Dejmek A, Martensson G, Thylen A, Hjerpe A. Clinical utility of liquid-chromatographic analysis of effusions for hyaluronate content. Clin Chem. 1994;40(5):777–80.

    Article  CAS  Google Scholar 

  78. Robinson BW, Creaney J, Lake R, et al. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003;362(9396):1612–6.

    Article  CAS  Google Scholar 

  79. Rump A, Morikawa Y, Tanaka M, et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279(10):9190–8.

    Article  CAS  Google Scholar 

  80. Hollevoet K, Bernard D, De Geeter F, et al. Glomerular filtration rate is a confounder for the measurement of soluble mesothelin in serum. Clin Chem. 2009;55(7):1431–3.

    Article  CAS  Google Scholar 

  81. Park EK, Thomas PS, Creaney J, Johnson AR, Robinson BW, Yates DH. Factors affecting soluble mesothelin related protein levels in an asbestos-exposed population. Clin Chem Lab Med. 2010;48(6):869–74.

    Article  CAS  Google Scholar 

  82. Rundlof AK, Fernandes AP, Selenius M. al. Quantification of alternative mRNA species and identification of thioredoxin reductase 1 isoforms in human tumor cells. Differentiation. 2007;75(2):123–32.

    Article  CAS  Google Scholar 

  83. Kahlos K, Soini Y, Saily M, et al. Up-regulation of thioredoxin and thioredoxin reductase in human malignant pleural mesothelioma. Int J Cancer. 2001;95(3):198–204.

    Article  CAS  Google Scholar 

  84. Yuan Y, Nymoen DA, Stavnes HT, et al. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Amer J Surg Pathol. 2009;33(11):1673–82.

    Article  Google Scholar 

  85. Chen Z, Gaudino G, Pass HI, Carbone M, Yang H. Diagnostic and prognostic biomarkers for malignant mesothelioma: an update. Transl Lung Cancer Res. 2017;6(3):259–69.

    Article  CAS  Google Scholar 

  86. Ettinger DS, Wood DE, Aisner DL, et al. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Malignant Pleural Mesothelioma, version 2.2019-April 1, 2019. https://www.nccn.org/professionals/physician_gls/pdf/mpm.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michael, C., Hiroshima, K., Hjerpe, A., Michelow, P., Önal, B., Segal, A. (2020). Malignant-Primary (MAL-P) (Mesothelioma). In: Chandra, A., Crothers, B., Kurtycz, D., Schmitt, F. (eds) The International System for Serous Fluid Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-53908-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53908-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53907-8

  • Online ISBN: 978-3-030-53908-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics