Skip to main content

Hereditary Syndromes and Pancreatic Cancer

  • Chapter
  • First Online:
Textbook of Pancreatic Cancer

Abstract

Up to 10% of patients with pancreatic cancer have a positive family history with affected close relatives. In some families, pancreatic cancer occurs as part of specific tumour predisposition syndromes. To date, our knowledge on genetic predisposition factors for pancreatic carcinoma is improving. Genetic testing in this context is in full expansion since some genetic risk factors may function as therapeutic targets. In this review, we discuss known genetic causes of increased risk for pancreatic ductal adenocarcinoma (PDAC). Conditions covered include Peutz Jeghers syndrome (STK11), familial atypical multiple mole melanoma and pancreatic cancer syndrome (CDKN2A), hereditary breast and ovarian cancer syndrome (BRCA1/BRCA2), PALB2 and ATM gene mutations, Lynch syndrome (MLH1/MSH2/MSH6/PMS2), and hereditary pancreatitis (PRSS1/CFTR/CRTC/SPINK1). We also present recent recommendations on pancreatic cancer surveillance in high-risk individuals, based on expert opinions. Further research is warranted to collect evidence on the benefit of these recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Duffy A, Capanu M, Allen P, Kurtz R, Olson SH, Ludwig E, et al. Pancreatic adenocarcinoma in a young patient population—12-year experience at Memorial Sloan Kettering Cancer Center. J Surg Oncol. 2009;100(1):8–12. https://doi.org/10.1002/jso.21292.

    Article  CAS  PubMed  Google Scholar 

  2. Lin JC, Chan DC, Chen PJ, Chu HC, Chueh TH, Huang HH, et al. Clinical characteristics of early onset pancreatic adenocarcinoma: a medical center experience and review of the literature. Pancreas. 2011;40(4):638–9. https://doi.org/10.1097/MPA.0b013e318214fe56.

    Article  PubMed  Google Scholar 

  3. McWilliams RR, Maisonneuve P, Bamlet WR, Petersen GM, Li D, Risch HA, et al. Risk factors for early-onset and very-early-onset pancreatic adenocarcinoma: a Pancreatic Cancer Case-Control Consortium (PanC4) analysis. Pancreas. 2016;45(2):311–6. https://doi.org/10.1097/MPA.0000000000000392.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chen F, Childs EJ, Mocci E, Bracci P, Gallinger S, Li D, et al. Analysis of heritability and genetic architecture of pancreatic cancer: a PanC4 study. Cancer Epidemiol Biomarkers Prev. 2019;28(7):1238–45. https://doi.org/10.1158/1055-9965.EPI-18-1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, et al. Common variation at 2p13.3, 3q29, 7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat Genet. 2015;47(8):911–6. https://doi.org/10.1038/ng.3341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pea A, Hruban RH, Wood LD. Genetics of pancreatic neuroendocrine tumors: implications for the clinic. Expert Rev Gastroenterol Hepatol. 2015;9(11):1407–19. https://doi.org/10.1586/17474124.2015.1092383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heestand GM, Kurzrock R. Molecular landscape of pancreatic cancer: implications for current clinical trials. Oncotarget. 2015;6(7):4553–61. https://doi.org/10.18632/oncotarget.2972.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hu C, Hart SN, Bamlet WR, Moore RM, Nandakumar K, Eckloff BW, et al. Prevalence of pathogenic mutations in cancer predisposition genes among pancreatic cancer patients. Cancer Epidemiol Biomarkers Prev. 2016;25(1):207–11. https://doi.org/10.1158/1055-9965.EPI-15-0455.

    Article  CAS  PubMed  Google Scholar 

  9. Shindo K, Yu J, Suenaga M, Fesharakizadeh S, Cho C, Macgregor-Das A, et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35(30):3382–90. https://doi.org/10.1200/JCO.2017.72.3502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Young EL, Thompson BA, Neklason DW, Firpo MA, Werner T, Bell R, et al. Pancreatic cancer as a sentinel for hereditary cancer predisposition. BMC Cancer. 2018;18(1):697. https://doi.org/10.1186/s12885-018-4573-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yurgelun MB, Chittenden AB, Morales-Oyarvide V, Rubinson DA, Dunne RF, Kozak MM, et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med. 2019;21(1):213–23. https://doi.org/10.1038/s41436-018-0009-5.

    Article  CAS  PubMed  Google Scholar 

  12. Hu C, Hart SN, Polley EC, Gnanaolivu R, Shimelis H, Lee KY, et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319(23):2401–9. https://doi.org/10.1001/jama.2018.6228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salo-Mullen EE, O'Reilly EM, Kelsen DP, Ashraf AM, Lowery MA, Yu KH, et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer. 2015;121(24):4382–8. https://doi.org/10.1002/cncr.29664.

    Article  CAS  PubMed  Google Scholar 

  14. Zhen DB, Rabe KG, Gallinger S, Syngal S, Schwartz AG, Goggins MG, et al. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genet Med. 2015;17(7):569–77. https://doi.org/10.1038/gim.2014.153.

    Article  CAS  PubMed  Google Scholar 

  15. Chaffee KG, Oberg AL, McWilliams RR, Majithia N, Allen BA, Kidd J, et al. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet Med. 2018;20(1):119–27. https://doi.org/10.1038/gim.2017.85.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz M, Korenbaum C, Benfoda M, Mary M, Colas C, Coulet F, et al. Familial pancreatic adenocarcinoma: a retrospective analysis of germline genetic testing in a French multicentre cohort. Clin Genet. 2019;96(6):579–84. https://doi.org/10.1111/cge.13629.

    Article  CAS  PubMed  Google Scholar 

  17. Takai E, Yachida S, Shimizu K, Furuse J, Kubo E, Ohmoto A, et al. Germline mutations in Japanese familial pancreatic cancer patients. Oncotarget. 2016;7(45):74227–35. https://doi.org/10.18632/oncotarget.12490.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roberts NJ, Norris AL, Petersen GM, Bondy ML, Brand R, Gallinger S, et al. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6(2):166–75. https://doi.org/10.1158/2159-8290.CD-15-0402.

    Article  CAS  PubMed  Google Scholar 

  19. Lener MR, Kashyap A, Kluzniak W, Cybulski C, Soluch A, Pietrzak S, et al. The prevalence of founder mutations among individuals from families with familial pancreatic cancer syndrome. Cancer Res Treat. 2017;49(2):430–6. https://doi.org/10.4143/crt.2016.217.

    Article  CAS  PubMed  Google Scholar 

  20. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3. https://doi.org/10.1073/pnas.68.4.820.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giardiello FM, Trimbath JD. Peutz-Jeghers syndrome and management recommendations. Clin Gastroenterol Hepatol. 2006;4(4):408–15. https://doi.org/10.1016/j.cgh.2005.11.005.

    Article  PubMed  Google Scholar 

  22. Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer. 2011;12(1):23–38. https://doi.org/10.1038/nrc3169.

    Article  CAS  PubMed  Google Scholar 

  23. Beggs AD, Latchford AR, Vasen HF, Moslein G, Alonso A, Aretz S, et al. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86. https://doi.org/10.1136/gut.2009.198499.

    Article  CAS  PubMed  Google Scholar 

  24. Jeghers H, Mc KV, Katz KH. Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med. 1949;241(25):993, illust; passim. https://doi.org/10.1056/NEJM194912222412501.

    Article  PubMed  Google Scholar 

  25. Ulbright TM, Amin MB, Young RH. Intratubular large cell hyalinizing sertoli cell neoplasia of the testis: a report of 8 cases of a distinctive lesion of the Peutz-Jeghers syndrome. Am J Surg Pathol. 2007;31(6):827–35. https://doi.org/10.1097/PAS.0b013e3180309e33.

    Article  PubMed  Google Scholar 

  26. Riegert-Johnson D, Gleeson FC, Westra W, Hefferon T, Wong Kee Song LM, Spurck L, et al. Peutz-Jeghers syndrome. In: Riegert-Johnson DL, Boardman LA, Hefferon T, Roberts M, editors. Cancer syndromes. Bethesda, MD: National Center for Biotechnology Information; 2009.

    Google Scholar 

  27. Resta N, Pierannunzio D, Lenato GM, Stella A, Capocaccia R, Bagnulo R, et al. Cancer risk associated with STK11/LKB1 germline mutations in Peutz-Jeghers syndrome patients: results of an Italian multicenter study. Dig Liver Dis. 2013;45(7):606–11. https://doi.org/10.1016/j.dld.2012.12.018.

    Article  CAS  PubMed  Google Scholar 

  28. van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol. 2010;105(6):1258–64.; ; author reply 65. https://doi.org/10.1038/ajg.2009.725.

    Article  PubMed  Google Scholar 

  29. Grant RC, Selander I, Connor AA, Selvarajah S, Borgida A, Briollais L, et al. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology. 2015;148(3):556–64. https://doi.org/10.1053/j.gastro.2014.11.042.

    Article  CAS  PubMed  Google Scholar 

  30. Skaro M, Nanda N, Gauthier C, Felsenstein M, Jiang Z, Qiu M, et al. Prevalence of germline mutations associated with cancer risk in patients with intraductal papillary mucinous neoplasms. Gastroenterology. 2019;156(6):1905–13. https://doi.org/10.1053/j.gastro.2019.01.254.

    Article  CAS  PubMed  Google Scholar 

  31. Giardiello FM, Brensinger JD, Tersmette AC, Goodman SN, Petersen GM, Booker SV, et al. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology. 2000;119(6):1447–53. https://doi.org/10.1053/gast.2000.20228.

    Article  CAS  PubMed  Google Scholar 

  32. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12(10):3209–15. https://doi.org/10.1158/1078-0432.CCR-06-0083.

    Article  CAS  PubMed  Google Scholar 

  33. Korsse SE, Harinck F, van Lier MG, Biermann K, Offerhaus GJ, Krak N, et al. Pancreatic cancer risk in Peutz-Jeghers syndrome patients: a large cohort study and implications for surveillance. J Med Genet. 2013;50(1):59–64. https://doi.org/10.1136/jmedgenet-2012-101277.

    Article  CAS  PubMed  Google Scholar 

  34. Goggins M, Overbeek KA, Brand R, Syngal S, Del Chiaro M, Bartsch DK, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17. https://doi.org/10.1136/gutjnl-2019-319352.

    Article  CAS  PubMed  Google Scholar 

  35. Lynch HT, Krush AJ. Heredity and malignant melanoma: implications for early cancer detection. Can Med Assoc J. 1968;99(1):17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8(1):15–21. https://doi.org/10.1038/ng0994-15.

    Article  CAS  PubMed  Google Scholar 

  37. Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, et al. Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet. 2007;44(2):99–106. https://doi.org/10.1136/jmg.2006.043802.

    Article  CAS  PubMed  Google Scholar 

  38. Villacanas O, Perez JJ, Rubio-Martinez J. Structural analysis of the inhibition of Cdk4 and Cdk6 by p16(INK4a) through molecular dynamics simulations. J Biomol Struct Dyn. 2002;20(3):347–58. https://doi.org/10.1080/07391102.2002.10506853.

    Article  CAS  PubMed  Google Scholar 

  39. Soura E, Eliades PJ, Shannon K, Stratigos AJ, Tsao H. Hereditary melanoma: update on syndromes and management: genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol. 2016;74(3):395–407.; ; quiz 8–10. https://doi.org/10.1016/j.jaad.2015.08.038.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bartsch DK, Sina-Frey M, Lang S, Wild A, Gerdes B, Barth P, et al. CDKN2A germline mutations in familial pancreatic cancer. Ann Surg. 2002;236(6):730–7. https://doi.org/10.1097/00000658-200212000-00005.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lynch HT, Brand RE, Hogg D, Deters CA, Fusaro RM, Lynch JF, et al. Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer. 2002;94(1):84–96. https://doi.org/10.1002/cncr.10159.

    Article  CAS  PubMed  Google Scholar 

  42. Ghiorzo P, Fornarini G, Sciallero S, Battistuzzi L, Belli F, Bernard L, et al. CDKN2A is the main susceptibility gene in Italian pancreatic cancer families. J Med Genet. 2012;49(3):164–70. https://doi.org/10.1136/jmedgenet-2011-100281.

    Article  CAS  PubMed  Google Scholar 

  43. McWilliams RR, Wieben ED, Rabe KG, Pedersen KS, Wu Y, Sicotte H, et al. Prevalence of CDKN2A mutations in pancreatic cancer patients: implications for genetic counseling. Eur J Hum Genet. 2011;19(4):472–8. https://doi.org/10.1038/ejhg.2010.198.

    Article  CAS  PubMed  Google Scholar 

  44. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, et al. Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002;94(12):894–903. https://doi.org/10.1093/jnci/94.12.894.

    Article  CAS  PubMed  Google Scholar 

  45. Cust AE, Harland M, Makalic E, Schmidt D, Dowty JG, Aitken JF, et al. Melanoma risk for CDKN2A mutation carriers who are relatives of population-based case carriers in Australia and the UK. J Med Genet. 2011;48(4):266–72. https://doi.org/10.1136/jmg.2010.086538.

    Article  CAS  PubMed  Google Scholar 

  46. Begg CB, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, et al. Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst. 2005;97(20):1507–15. https://doi.org/10.1093/jnci/dji312.

    Article  CAS  PubMed  Google Scholar 

  47. Berwick M, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, et al. The prevalence of CDKN2A germ-line mutations and relative risk for cutaneous malignant melanoma: an international population-based study. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1520–5. https://doi.org/10.1158/1055-9965.EPI-06-0270.

    Article  CAS  PubMed  Google Scholar 

  48. Vasen HF, Gruis NA, Frants RR, van Der Velden PA, Hille ET, Bergman W. Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer. 2000;87(6):809–11.

    Article  CAS  PubMed  Google Scholar 

  49. Densham RM, Morris JR. The BRCA1 Ubiquitin ligase function sets a new trend for remodelling in DNA repair. Nucleus. 2017;8(2):116–25. https://doi.org/10.1080/19491034.2016.1267092.

    Article  CAS  PubMed  Google Scholar 

  50. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78. https://doi.org/10.1038/nrc3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Balmana J, Diez O, Rubio IT, Cardoso F, Group EGW. BRCA in breast cancer: ESMO clinical practice guidelines. Ann Oncol. 2011;22(Suppl 6):vi31–4. https://doi.org/10.1093/annonc/mdr373.

    Article  PubMed  Google Scholar 

  52. Tung NM, Garber JE. BRCA1/2 testing: therapeutic implications for breast cancer management. Br J Cancer. 2018;119(2):141–52. https://doi.org/10.1038/s41416-018-0127-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gupta M, Iyer R, Fountzilas C. Poly(ADP-ribose) polymerase inhibitors in pancreatic cancer: a new treatment paradigms and future implications. Cancers (Basel). 2019;11(12):1980. https://doi.org/10.3390/cancers11121980.

    Article  CAS  Google Scholar 

  54. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007;25(11):1329–33. https://doi.org/10.1200/JCO.2006.09.1066.

    Article  PubMed  Google Scholar 

  55. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst. 1999;91(15):1310–6. https://doi.org/10.1093/jnci/91.15.1310.

    Article  Google Scholar 

  56. Oh M, McBride A, Yun S, Bhattacharjee S, Slack M, Martin JR, et al. BRCA1 and BRCA2 gene mutations and colorectal cancer risk: systematic review and meta-analysis. J Natl Cancer Inst. 2018;110(11):1178–89. https://doi.org/10.1093/jnci/djy148.

    Article  CAS  PubMed  Google Scholar 

  57. Streff H, Profato J, Ye Y, Nebgen D, Peterson SK, Singletary C, et al. Cancer incidence in first- and second-degree relatives of BRCA1 and BRCA2 mutation carriers. Oncologist. 2016;21(7):869–74. https://doi.org/10.1634/theoncologist.2015-0354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thompson D, Easton DF, Breast Cancer Linkage Consortium. Cancer incidence in BRCA1 mutation carriers. J Natl Cancer Inst. 2002;94(18):1358–65. https://doi.org/10.1093/jnci/94.18.1358.

    Article  CAS  PubMed  Google Scholar 

  59. van Asperen CJ, Brohet RM, Meijers-Heijboer EJ, Hoogerbrugge N, Verhoef S, Vasen HF, et al. Cancer risks in BRCA2 families: estimates for sites other than breast and ovary. J Med Genet. 2005;42(9):711–9. https://doi.org/10.1136/jmg.2004.028829.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goggins M, Schutte M, Lu J, Moskaluk CA, Weinstein CL, Petersen GM, et al. Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res. 1996;56(23):5360–4.

    CAS  PubMed  Google Scholar 

  61. Holter S, Borgida A, Dodd A, Grant R, Semotiuk K, Hedley D, et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J Clin Oncol. 2015;33(28):3124–9. https://doi.org/10.1200/JCO.2014.59.7401.

    Article  CAS  PubMed  Google Scholar 

  62. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518(7540):495–501. https://doi.org/10.1038/nature14169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Couch FJ, Johnson MR, Rabe KG, Brune K, de Andrade M, Goggins M, et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(2):342–6. https://doi.org/10.1158/1055-9965.EPI-06-0783.

    Article  CAS  PubMed  Google Scholar 

  64. Slater EP, Langer P, Fendrich V, Habbe N, Chaloupka B, Matthai E, et al. Prevalence of BRCA2 and CDKN2a mutations in German familial pancreatic cancer families. Fam Cancer. 2010;9(3):335–43. https://doi.org/10.1007/s10689-010-9329-6.

    Article  CAS  PubMed  Google Scholar 

  65. Park JY, Singh TR, Nassar N, Zhang F, Freund M, Hanenberg H, et al. Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair. Oncogene. 2014;33(40):4803–12. https://doi.org/10.1038/onc.2013.421.

    Article  CAS  PubMed  Google Scholar 

  66. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 2014;371(6):497–506. https://doi.org/10.1056/NEJMoa1400382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang X, Leslie G, Doroszuk A, Schneider S, Allen J, Decker B, et al. Cancer risks associated with germline PALB2 pathogenic variants: an international study of 524 families. J Clin Oncol. 2019;38(7):674–85. https://doi.org/10.1200/JCO.19.01907.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fewings E, Larionov A, Redman J, Goldgraben MA, Scarth J, Richardson S, et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. Lancet Gastroenterol Hepatol. 2018;3(7):489–98. https://doi.org/10.1016/S2468-1253(18)30079-7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Borecka M, Zemankova P, Vocka M, Soucek P, Soukupova J, Kleiblova P, et al. Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genet. 2016;209(5):199–204. https://doi.org/10.1016/j.cancergen.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  70. Jones S, Hruban RH, Kamiyama M, Borges M, Zhang X, Parsons DW, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217. https://doi.org/10.1126/science.1171202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Slater EP, Langer P, Niemczyk E, Strauch K, Butler J, Habbe N, et al. PALB2 mutations in European familial pancreatic cancer families. Clin Genet. 2010;78(5):490–4. https://doi.org/10.1111/j.1399-0004.2010.01425.x.

    Article  CAS  PubMed  Google Scholar 

  72. Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C, Taherian N, et al. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology. 2009;137(3):1183–6. https://doi.org/10.1053/j.gastro.2009.06.055.

    Article  PubMed  Google Scholar 

  73. Boohaker RJ, Xu B. The versatile functions of ATM kinase. Biomed J. 2014;37(1):3–9. https://doi.org/10.4103/2319-4170.125655.

    Article  PubMed  Google Scholar 

  74. Gatti R, Perlman S. Ataxia-telangiectasia. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews((R)). Seattle, WA: University of Washington; 1993.

    Google Scholar 

  75. Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavtigian SV, Nathanson KL, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243–57. https://doi.org/10.1056/NEJMsr1501341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jerzak KJ, Mancuso T, Eisen A. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: a narrative review. Curr Oncol. 2018;25(2):e176–e80. https://doi.org/10.3747/co.25.3707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van Os NJ, Roeleveld N, Weemaes CM, Jongmans MC, Janssens GO, Taylor AM, et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet. 2016;90(2):105–17. https://doi.org/10.1111/cge.12710.

    Article  CAS  PubMed  Google Scholar 

  78. Roberts NJ, Jiao Y, Yu J, Kopelovich L, Petersen GM, Bondy ML, et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012;2(1):41–6. https://doi.org/10.1158/2159-8290.CD-11-0194.

    Article  CAS  PubMed  Google Scholar 

  79. Dominguez-Valentin M, Sampson JR, Seppala TT, Ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):15–25. https://doi.org/10.1038/s41436-019-0596-9.

    Article  CAS  PubMed  Google Scholar 

  80. Kawakami H, Zaanan A, Sinicrope FA. Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol. 2015;16(7):30. https://doi.org/10.1007/s11864-015-0348-2.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Evaluation of Genomic Applications in Practice and Prevention Working Group. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet Med. 2009;11(1):35–41. https://doi.org/10.1097/GIM.0b013e31818fa2ff.

    Article  Google Scholar 

  82. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Moller P, Seppala TT, Bernstein I, Holinski-Feder E, Sala P, Gareth Evans D, et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut. 2018;67(7):1306–16. https://doi.org/10.1136/gutjnl-2017-314057.

    Article  PubMed  Google Scholar 

  84. Dominguez-Valentin M, Sampson JR, Seppälä TT, Ten Broeke SW, Plazzer JP, Nakken S, Engel C, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):15–25. https://doi.org/10.1038/s41436-019-0596-9.

  85. Singh VK, Yadav D, Garg PK. Diagnosis and management of chronic pancreatitis: a review. JAMA. 2019;322(24):2422–34. https://doi.org/10.1001/jama.2019.19411.

    Article  CAS  PubMed  Google Scholar 

  86. Jalaly NY, Moran RA, Fargahi F, Khashab MA, Kamal A, Lennon AM, et al. An evaluation of factors associated with pathogenic PRSS1, SPINK1, CTFR, and/or CTRC genetic variants in patients with idiopathic pancreatitis. Am J Gastroenterol. 2017;112(8):1320–9. https://doi.org/10.1038/ajg.2017.106.

    Article  CAS  PubMed  Google Scholar 

  87. Tamura K, Yu J, Hata T, Suenaga M, Shindo K, Abe T, et al. Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A. 2018;115(18):4767–72. https://doi.org/10.1073/pnas.1720588115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kirkegard J, Mortensen FV, Cronin-Fenton D. Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol. 2017;112(9):1366–72. https://doi.org/10.1038/ajg.2017.218.

    Article  PubMed  Google Scholar 

  89. Mai PL, Best AF, Peters JA, DeCastro RM, Khincha PP, Loud JT, et al. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer. 2016;122(23):3673–81. https://doi.org/10.1002/cncr.30248.

    Article  CAS  PubMed  Google Scholar 

  90. Amadou A, Achatz MIW, Hainaut P. Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol. 2018;30(1):23–9. https://doi.org/10.1097/CCO.0000000000000423.

    Article  CAS  PubMed  Google Scholar 

  91. Ruijs MW, Verhoef S, Rookus MA, Pruntel R, van der Hout AH, Hogervorst FB, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47(6):421–8. https://doi.org/10.1136/jmg.2009.073429.

    Article  CAS  PubMed  Google Scholar 

  92. Frebourg T, Lagercrantz SB,Oliveira C, Magenheim R,Evans GD, European Reference Network GENTURIS. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet. 2020. https://doi.org/10.1038/s41431-020-0638-4.

  93. Aihara H, Kumar N, Thompson CC. Diagnosis, surveillance, and treatment strategies for familial adenomatous polyposis: rationale and update. Eur J Gastroenterol Hepatol. 2014;26(3):255–62. https://doi.org/10.1097/MEG.0000000000000010.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Giardiello FM, Offerhaus GJ, Lee DH, Krush AJ, Tersmette AC, Booker SV, et al. Increased risk of thyroid and pancreatic carcinoma in familial adenomatous polyposis. Gut. 1993;34(10):1394–6. https://doi.org/10.1136/gut.34.10.1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Groen EJ, Roos A, Muntinghe FL, Enting RH, de Vries J, Kleibeuker JH, et al. Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol. 2008;15(9):2439–50. https://doi.org/10.1245/s10434-008-9981-3.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Thibodeau ML, Zhao EY, Reisle C, Ch’ng C, Wong HL, Shen Y, et al. Base excision repair deficiency signatures implicate germline and somatic MUTYH aberrations in pancreatic ductal adenocarcinoma and breast cancer oncogenesis. Cold Spring Harb Mol Case Stud. 2019;5(2):a003681. https://doi.org/10.1101/mcs.a003681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nissim S, Leshchiner I, Mancias JD, Greenblatt MB, Maertens O, Cassa CA, et al. Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer. Nat Genet. 2019;51(9):1308–14. https://doi.org/10.1038/s41588-019-0475-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Zschocke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pölsler, L., Claes, K.B.M., Zschocke, J. (2021). Hereditary Syndromes and Pancreatic Cancer. In: Søreide, K., Stättner, S. (eds) Textbook of Pancreatic Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-53786-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53786-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53785-2

  • Online ISBN: 978-3-030-53786-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics