Skip to main content

Applications of Min–Max Methods to Geometry

  • Chapter
  • First Online:
Geometric Analysis

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2263))

  • 1252 Accesses

Abstract

The existence of minimal surfaces in closed manifolds is a classical subject with a long history. This chapter presents some recent advances on the subject, motivated by Yau’s conjecture concerning the existence of infinitely-many ones. The main tools used here are a combination of techniques from Geometric Measure Theory and Minimal methods. The conjecture is proved for a large class of metrics and, via the concept of volume spectrum, a density result is also derived.

The first author is partly supported by NSF-DMS-1811840. The second author is partly supported by NSF DMS-1710846 and by a Simons Investigator Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Almgren, The homotopy groups of the integral cycle groups. Topology 1(4), 257–299 (1962)

    Article  MathSciNet  Google Scholar 

  2. F. Almgren, in The Theory of Varifolds. Mimeographed Notes (Princeton, 1965)

    Google Scholar 

  3. T. Beck, S. Becker-Kahn, B. Hanin, Nodal sets of smooth functions with finite vanishing order and p-sweepouts. Calc. Var. Partial Differ. Equ. 57(5), 140 (2018)

    Google Scholar 

  4. V. Buchstaber, T. Panov, in Torus Actions and Their Applications in Topology and Combinatorics. University Lecture Series, vol. 24 (American Mathematical Society, Providence, 2002), viii+ 144 pp

    Google Scholar 

  5. O. Chodosh, C. Mantoulidis, Minimal surfaces and the Allen–Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates. Ann. Math. 191(1), 213–328 (2020). arXiv:1803.02716 [math.DG]

    Google Scholar 

  6. H. Donnelly, C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93, 161–183 (1988)

    Article  MathSciNet  Google Scholar 

  7. H. Federer, in Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York 1969)

    Google Scholar 

  8. W.H. Fleming, Flat chains over a finite coefficient group. Trans. Am. Math. Soc. 121, 160–186 (1966)

    Article  MathSciNet  Google Scholar 

  9. M. Gromov, Dimension, nonlinear spectra and width, in Geometric Aspects of Functional Analysis (1986/1987). Lecture Notes in Mathematics, vol. 1317 (Springer, Berlin, 1988), pp. 132–184

    Google Scholar 

  10. M. Gromov, Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13, 178–215 (2003)

    Article  MathSciNet  Google Scholar 

  11. L. Guth, Minimax problems related to cup powers and Steenrod squares. Geom. Funct. Anal. 18, 1917–1987 (2009)

    Article  MathSciNet  Google Scholar 

  12. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002) arXiv:1709.02652 (2017)

    Google Scholar 

  13. K. Irie, F.C. Marques, A. Neves, Density of minimal hypersurfaces for generic metrics. Ann. Math. 187(3), 963–972 (2018)

    Article  MathSciNet  Google Scholar 

  14. D. Jerison, G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations: Essays in Honour of Alberto P. Calderón, ed. by M. Christ, C. Kenig, C. Sadosky (University of Chicago Press, Chicago, 1999), pp. 223–239

    MATH  Google Scholar 

  15. B. Lawson, Complete minimal surfaces in S 3. Ann. Math. 92 , 335–374 (1970)

    Article  MathSciNet  Google Scholar 

  16. Y. Liokumovich, F.C. Marques, A. Neves, Weyl law for the volume spectrum. Ann. Math. 187(3), 933–961 (2018)

    Article  MathSciNet  Google Scholar 

  17. F.C. Marques, A. Neves, Min–max theory and the Willmore conjecture. Ann. Math. 179(2), 683–782 (2014)

    Article  MathSciNet  Google Scholar 

  18. F.C. Marques, A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209, 577–616 (2017)

    Article  MathSciNet  Google Scholar 

  19. F.C. Marques, A. Neves, in Applications of Almgren–Pitts Min–Max Theory. Current Developments in Mathematics, vol. 2013 (International Press, Somerville, 2014), pp. 1–71

    Google Scholar 

  20. F.C. Marques, A. Neves, Morse index and multiplicity of min–max minimal hypersurfaces. Camb. J. Math. 4(4), 463–511 (2016)

    Article  MathSciNet  Google Scholar 

  21. F.C. Marques, A. Neves, Morse index of multiplicity one min–max minimal hypersurfaces (2018). arXiv:1803.04273 [math.DG]

    Google Scholar 

  22. F.C. Marques, A. Neves, A. Song, Equidistribution of minimal hypersurfaces for generic metrics. Invent. Math. 216, 421–443 (2019). arXiv:1712.06238

    Google Scholar 

  23. C. Nurser, Low min–max widths of the round three-sphere. Ph.D. thesis, 2016

    Google Scholar 

  24. J. Pitts, in Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Mathematical Notes, vol. 27 (Princeton University Press, Princeton, 1981)

    Google Scholar 

  25. R. Schoen, L. Simon, Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34, 741–797 (1981)

    Article  MathSciNet  Google Scholar 

  26. B. Sharp, Compactness of minimal hypersurfaces with bounded index. J. Differ. Geom. 106(2), 317–339 (2017)

    Article  MathSciNet  Google Scholar 

  27. L. Simon, Lectures on geometric measure theory, in Proceedings of the Centre for Mathematical Analysis (Australian National University, Canberra, 1983)

    Google Scholar 

  28. A. Song, Existence of infinitely many minimal hypersurfaces in closed manifolds (2018). arXiv:1806.08816 [math.DG]

    Google Scholar 

  29. H. Weyl, in Über die Asymptotische Verteilung der Eigenwerte. Nachr. Konigl. Ges. Wiss (Göttingen, 1911), pp. 110–117

    Google Scholar 

  30. B. White, The space of minimal submanifolds for varying Riemannian metrics. Indiana Univ. Math. J. 40, 161–200 (1991)

    Article  MathSciNet  Google Scholar 

  31. B. White, On the bumpy metrics theorem for minimal submanifolds. Am. J. Math. 139(4), 1149–1155 (2017)

    Article  MathSciNet  Google Scholar 

  32. S.-T. Yau, Problem section, in Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102 (Princeton University Press, Princeton, 1982), pp. 669–706

    Google Scholar 

  33. W. Ziemer, Integral currents mod 2. Trans. Am. Math. Soc. 105, 496–524 (1962)

    MathSciNet  MATH  Google Scholar 

  34. X. Zhou, J. Zhu, Min–max theory for constant mean curvature hypersurfaces. Invent. Math. 218, 441–490 (2019). arXiv:1707.08012 [math.DG]

    Google Scholar 

  35. X. Zhou, On the multiplicity one conjecture in min–max theory (2019). arXiv:1901.01173 [math.DG]

    Google Scholar 

  36. X. Zhou, J. Zhu, Existence of hypersurfaces with prescribed mean curvature I—generic min–max (2018). arXiv:1808.03527 [math.DG]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Neves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marques, F.C., Neves, A. (2020). Applications of Min–Max Methods to Geometry. In: Gursky, M., Malchiodi, A. (eds) Geometric Analysis . Lecture Notes in Mathematics(), vol 2263. Springer, Cham. https://doi.org/10.1007/978-3-030-53725-8_2

Download citation

Publish with us

Policies and ethics