Skip to main content

Management of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Acute Leukemias

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 1059 Accesses

Abstract

The successful incorporation of tyrosine kinase inhibitors (TKIs) to chemotherapy regimens in patients with Philadelphia chromosome (Ph)-positive acute lymphoblastic leukemia (ALL) has significantly improved the outcome of these patients. This advancement has also generated several new areas of investigation such as identifying the role of reduced or chemotherapy-free induction therapy, the best TKI option, the benefit of allogeneic hematopoietic stem cell transplant (HSCT) in first remission, and the effect of prophylactic TKI post-HSCT in patients with Ph-positive ALL. Novel treatment modalities such as bispecific T-cell engagers (e.g., blinatumomab), drug conjugate monoclonal antibodies (e.g., inotuzumab ozogamicin), more potent TKIs, and chimeric antigen receptor T-cell therapies are being investigated. In this chapter, we will provide an overview of the current and future treatment paradigms for Ph-positive ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu-Dumlao T, Kantarjian H, Thomas DA, et al. Philadelphia-positive acute lymphoblastic leukemia: current treatment options. Curr Oncol Rep. 2012;14:387–94. https://doi.org/10.1007/s11912-012-0247-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yilmaz M, Kantarjian H, Ravandi-Kashani F, et al. Philadelphia chromosome-positive acute lymphoblastic leukemia in adults: current treatments and future perspectives. Clin Adv Hematol Oncol. 2018;16:216–23.

    PubMed  Google Scholar 

  3. Leoni V, Biondi A. Tyrosine kinase inhibitors in BCR-ABL positive acute lymphoblastic leukemia. Haematologica. 2015;100:295–9. https://doi.org/10.3324/haematol.2015.124016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stirewalt DL, Guthrie KA, Beppu L, et al. Predictors of relapse and overall survival in Philadelphia chromosome–positive acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2003;9:206–12. https://doi.org/10.1016/S1083-8791(03)70011-1.

    Article  PubMed  Google Scholar 

  5. Ravandi F. How I treat Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2019;133:130–6. https://doi.org/10.1182/blood-2018-08-832105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang Z-J, Liu Y-F, Xu L-Z, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35:48. https://doi.org/10.1186/s40880-016-0108-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27:5202–7. https://doi.org/10.1200/jco.2008.21.6408.

    Article  CAS  PubMed  Google Scholar 

  8. Ribera J, Morgades M, Zamora L, et al. Prognostic significance of copy number alterations in adolescent and adult patients with precursor B acute lymphoblastic leukemia enrolled in PETHEMA protocols. Cancer. 2015;121:3809–17. https://doi.org/10.1002/cncr.29579.

    Article  CAS  PubMed  Google Scholar 

  9. Fedullo AL, Messina M, Elia L, et al. Prognostic implications of additional genomic lesions in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2019;104:312–8. https://doi.org/10.3324/haematol.2018.196055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pfeifer H, Raum K, Markovic S, et al. Genomic CDKN2A/2B deletions in adult Ph(+) ALL are adverse despite allogeneic stem cell transplantation. Blood. 2018;131:1464–75. https://doi.org/10.1182/blood-2017-07-796862.

    Article  CAS  PubMed  Google Scholar 

  11. Scheijen B, Boer JM, Marke R, et al. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica. 2017;102:541–51. https://doi.org/10.3324/haematol.2016.153023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Short NJ, Kantarjian H, Pui CH, et al. SOHO state of the art update and next questions: Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18:439–46. https://doi.org/10.1016/j.clml.2018.05.015.

    Article  PubMed  Google Scholar 

  13. Short NJ, Kantarjian HM, Sasaki K, et al. Poor outcomes associated with +der(22)t(9;22) and −9/9p in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. Am J Hematol. 2017;92:238–43. https://doi.org/10.1002/ajh.24625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37. https://doi.org/10.1182/blood-2006-01-0092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ravandi F. Managing Philadelphia chromosome-positive acute lymphoblastic leukemia: role of tyrosine kinase inhibitors. Clin Lymphoma Myeloma Leuk. 2011;11:198–203. https://doi.org/10.1016/j.clml.2011.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou T, Commodore L, Huang W-S, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des. 2011;77:1–11. https://doi.org/10.1111/j.1747-0285.2010.01054.x.

    Article  CAS  PubMed  Google Scholar 

  17. Ravandi F, Othus M, O’Brien SM, et al. US intergroup study of chemotherapy plus Dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv. 2016;1:250–9. https://doi.org/10.1182/bloodadvances.2016001495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rousselot P, Coudé MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128:774–82. https://doi.org/10.1182/blood-2016-02-700153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee KH, Lee JH, Choi SJ, et al. Clinical effect of imatinib added to intensive combination chemotherapy for newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 2005;19:1509–16. https://doi.org/10.1038/sj.leu.2403886.

    Article  CAS  PubMed  Google Scholar 

  20. Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006;24:460–6. https://doi.org/10.1200/jco.2005.03.2177.

    Article  CAS  PubMed  Google Scholar 

  21. de Labarthe A, Rousselot P, Huguet-Rigal F, et al. Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: results of the GRAAPH-2003 study. Blood. 2007;109:1408–13. https://doi.org/10.1182/blood-2006-03-011908.

    Article  CAS  PubMed  Google Scholar 

  22. Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28:3644–52. https://doi.org/10.1200/jco.2010.28.1287.

    Article  CAS  PubMed  Google Scholar 

  23. Tanguy-Schmidt A, Rousselot P, Chalandon Y, et al. Long-term follow-up of the imatinib GRAAPH-2003 study in newly diagnosed patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia: a GRAALL study. Biol Blood Marrow Transplant. 2013;19:150–5. https://doi.org/10.1016/j.bbmt.2012.08.021.

    Article  CAS  PubMed  Google Scholar 

  24. Fielding AK, Rowe JM, Buck G, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123:843–50. https://doi.org/10.1182/blood-2013-09-529008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Daver N, Thomas D, Ravandi F, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100:653–61. https://doi.org/10.3324/haematol.2014.118588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125:3711–9. https://doi.org/10.1182/blood-2015-02-627935.

    Article  CAS  PubMed  Google Scholar 

  27. Lim SN, Joo YD, Lee KH, et al. Long-term follow-up of imatinib plus combination chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol. 2015;90:1013–20. https://doi.org/10.1002/ajh.24137.

    Article  CAS  PubMed  Google Scholar 

  28. Ravandi F, O’Brien SM, Cortes JE, et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121:4158–64. https://doi.org/10.1002/cncr.29646.

    Article  CAS  PubMed  Google Scholar 

  29. Kim D-Y, Joo Y-D, Lim S-N, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126:746–56. https://doi.org/10.1182/blood-2015-03-636548.

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Wang Y, Zhou C, et al. Nilotinib combined with multi-agent chemotherapy in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia: a single-center prospective study with long-term follow-up. Ann Hematol. 2019;98:633–45. https://doi.org/10.1007/s00277-019-03594-1.

    Article  CAS  PubMed  Google Scholar 

  31. Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16:1547–55. https://doi.org/10.1016/s1470-2045(15)00207-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5:e618–27. https://doi.org/10.1016/s2352-3026(18)30176-5.

    Article  PubMed  Google Scholar 

  33. Chiaretti S, Vitale A, Elia L, et al. Multicenter total therapy GIMEMA LAL 1509 protocol for de novo adult Ph+ acute lymphoblastic leukemia (ALL) patients. Updated results and refined genetic-based prognostic stratification. Blood. 2015;126:81. https://doi.org/10.1182/blood.V126.23.81.81.

    Article  Google Scholar 

  34. Ottmann OG, Pfeifer H, Cayuela J-M, et al. Nilotinib (Tasigna®) and chemotherapy for first-line treatment in elderly patients with de novo Philadelphia chromosome/BCR-ABL1 positive acute lymphoblastic leukemia (ALL): a trial of the European Working Group for Adult ALL (EWALL-PH-02). Blood. 2014;124:798. https://doi.org/10.1182/blood.V124.21.798.798.

    Article  Google Scholar 

  35. Ottmann OG, Pfeifer H, Cayuela J-M, et al. Nilotinib (Tasigna®) and low intensity chemotherapy for first-line treatment of elderly patients with BCR-ABL1-positive acute lymphoblastic leukemia: final results of a prospective multicenter trial (EWALL-PH02). Blood. 2018;132:31. https://doi.org/10.1182/blood-2018-99-114552.

    Article  Google Scholar 

  36. Chalandon Y, Rousselot P, Cayuela J-M, Thomas X, Clappier E, Havelange V, et al. Nilotinib combined with lower-intensity chemotherapy for front-line treatment of younger adults with Ph-positive acute lymphoblastic leukemia: interim analysis of the GRAAPH-2014 trial. Eur Hematol Assoc. 2018;2(1)

    Google Scholar 

  37. Vignetti M, Fazi P, Cimino G, et al. Imatinib plus steroids induces complete remissions and prolonged survival in elderly Philadelphia chromosome-positive patients with acute lymphoblastic leukemia without additional chemotherapy: results of the Gruppo Italiano Malattie Ematologiche dell’Adulto (GIMEMA) LAL0201-B protocol. Blood. 2007;109:3676–8. https://doi.org/10.1182/blood-2006-10-052746.

    Article  CAS  PubMed  Google Scholar 

  38. Foà R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood. 2011;118:6521–8. https://doi.org/10.1182/blood-2011-05-351403.

    Article  CAS  PubMed  Google Scholar 

  39. Martinelli G, Piciocchi A, Papayannidis C, et al. First report of the GIMEMA LAL1811 phase II prospective study of the combination of steroids with ponatinib as frontline therapy of elderly or unfit patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2017;130:99. https://doi.org/10.1182/blood.V130.Suppl_1.99.99.

    Article  Google Scholar 

  40. Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100:1965–71. https://doi.org/10.1182/blood-2001-12-0181.

    Article  CAS  PubMed  Google Scholar 

  41. Porkka K, Simonsson B, Dombret H, et al. Efficacy of dasatinib in patients with Philadelphia-chromosome-positive acute lymphoblastic leukemia who are resistant or intolerant to imatinib: 2-year follow-up data from START-L (CA180-015). Blood. 2007;110:2810. https://doi.org/10.1182/blood.V110.11.2810.2810.

    Article  Google Scholar 

  42. Ottmann O, Dombret H, Martinelli G, et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood. 2007;110:2309–15. https://doi.org/10.1182/blood-2007-02-073528.

    Article  CAS  PubMed  Google Scholar 

  43. Lilly MB, Ottmann OG, Shah NP, et al. Dasatinib 140 mg once daily versus 70 mg twice daily in patients with Ph-positive acute lymphoblastic leukemia who failed imatinib: results from a phase 3 study. Am J Hematol. 2010;85:164–70. https://doi.org/10.1002/ajh.21615.

    Article  CAS  PubMed  Google Scholar 

  44. Ottmann OG, Larson RA, Kantarjian HM, et al. Phase II study of nilotinib in patients with relapsed or refractory Philadelphia chromosome—positive acute lymphoblastic leukemia. Leukemia. 2013;27:1411–3. https://doi.org/10.1038/leu.2012.324.

    Article  CAS  PubMed  Google Scholar 

  45. Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Initial findings from the PACE trial: a pivotal phase 2 study of ponatinib in patients with CML and Ph+ ALL resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation. Blood. 2011;118:109. https://doi.org/10.1182/blood.V118.21.109.109.

    Article  Google Scholar 

  46. Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132:393–404. https://doi.org/10.1182/blood-2016-09-739086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014;89:282–7. https://doi.org/10.1002/ajh.23624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ravandi F, Kantarjian HM, Cortes J, et al. Combination of the hypercvad regimen with dasatinib is effective in patients with relapsed Philadelphia chromosome (Ph) positive acute lymphoblastic leukemia (ALL) and lymphoid blast phase chronic myeloid leukemia (CML-LB). Blood. 2009;114:2043. https://doi.org/10.1182/blood.V114.22.2043.2043.

    Article  Google Scholar 

  49. Jain N, Cortes JE, Ravandi F, et al. Inotuzumab ozogamicin in combination with bosutinib for patients with relapsed or refractory Ph+ ALL or CML in lymphoid blast phase. Blood. 2017;130:143. https://doi.org/10.1182/blood.V130.Suppl_1.143.143.

    Article  Google Scholar 

  50. Assi R, Kantarjian H, Short NJ, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17:897–901. https://doi.org/10.1016/j.clml.2017.08.101.

    Article  PubMed  Google Scholar 

  51. Wassmann B, Pfeifer H, Goekbuget N, et al. Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2006;108:1469–77. https://doi.org/10.1182/blood-2005-11-4386.

    Article  CAS  PubMed  Google Scholar 

  52. Laurini E, Posocco P, Fermeglia M, et al. Through the open door: Preferential binding of dasatinib to the active form of BCR-ABL unveiled by in silico experiments. Mol Oncol. 2013;7:968–75. https://doi.org/10.1016/j.molonc.2013.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Short NJ, Kantarjian HM, Kanagal-Shamanna R, et al. Ultra-accurate assessment of pretreatment ABL1 kinase domain (KD) mutations in patients (pts) with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) using duplex sequencing (DS). Blood. 2019;134:2578. https://doi.org/10.1182/blood-2019-125131.

    Article  Google Scholar 

  54. Jabbour E, DerSarkissian M, Duh MS, et al. Efficacy of ponatinib versus earlier generation tyrosine kinase inhibitors for front-line treatment of newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2018;18:257–65. https://doi.org/10.1016/j.clml.2018.02.010.

    Article  PubMed  Google Scholar 

  55. Sasaki K, Jabbour EJ, Ravandi F, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2016;122:3650–6. https://doi.org/10.1002/cncr.30231.

    Article  CAS  PubMed  Google Scholar 

  56. Sanchez R, Ayala R, Alonso RA, et al. Clinical characteristics of patients with central nervous system relapse in BCR-ABL1-positive acute lymphoblastic leukemia: the importance of characterizing ABL1 mutations in cerebrospinal fluid. Ann Hematol. 2017;96:1069–75. https://doi.org/10.1007/s00277-017-3002-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paul S, Sasaki K, Savoy JM, et al. Title: 12 versus 8 prophylactic intrathecal (IT) chemotherapy administration decrease incidence of central nervous system (CNS) relapse in patients (pts) with newly diagnosed Philadelphia (Ph)-positive acute lymphocytic leukemia (ALL). Blood. 2019;134:3810. https://doi.org/10.1182/blood-2019-130284.

    Article  Google Scholar 

  58. Lee KJ, Chow V, Weissman A, et al. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults. Ther Clin Risk Manag. 2016;12:1301–10. https://doi.org/10.2147/TCRM.S84261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. King AC, Pappacena JJ, Tallman MS, et al. Blinatumomab administered concurrently with oral tyrosine kinase inhibitor therapy is a well-tolerated consolidation strategy and eradicates measurable residual disease in adults with Philadelphia chromosome positive acute lymphoblastic leukemia. Leuk. Res. 2019;79:27–33. https://doi.org/10.1016/j.leukres.2019.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiaretti S, Bassan R, Vitale A, et al. Dasatinib-blinatumomab combination for the front-line treatment of adult Ph+ ALL patients. updated results of the GIMEMA LAL2116 D-Alba trial. Blood. 2019;134:740. https://doi.org/10.1182/blood-2019-128759.

    Article  Google Scholar 

  61. Stock W, Martinelli G, Stelljes M, et al. Outcomes with inotuzumab ozogamicin (InO) in patients with Philadelphia chromosome-positive (Ph+) relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). J Clin Oncol. 2018;36:7030. https://doi.org/10.1200/JCO.2018.36.15_suppl.7030.

    Article  Google Scholar 

  62. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125:2474–87. https://doi.org/10.1002/cncr.32116.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu Y-M, Wu Z, Tan Y-P, et al. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia: two case reports. Medicine (Baltimore). 2016;95:–e5676. https://doi.org/10.1097/MD.0000000000005676.

  64. Leonard JT, Tyner JW, Rowley J, et al. Venetoclax resistant Philadelphia chromosome positive acute lymphoblastic leukemia cells are also resistant to ABL inhibitors, which can be overcome by targeting the PI3K/AKT/mTOR pathway. Blood. 2016;128:1583. https://doi.org/10.1182/blood.V128.22.1583.1583.

    Article  Google Scholar 

  65. Ph+ALL cells are susceptible to dual targeting of BCL2 and ABL/LYN. Cancer Discov. 2016;6:1081. https://doi.org/10.1158/2159-8290.CD-RW2016-168.

  66. Leonard JT, Rowley JS, Eide CA, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med. 2016;8:354ra114. https://doi.org/10.1126/scitranslmed.aaf5309.

    Article  CAS  PubMed  Google Scholar 

  67. Candoni A, Rambaldi A, Fanin R, et al. Outcome of allogeneic hematopoietic stem cell transplantation in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in the era of tyrosine kinase inhibitors: a registry-based study of the Italian Blood and Marrow Transplantation Society (GITMO). Biol Blood Marrow Transplant. 2019;25:2388–97. https://doi.org/10.1016/j.bbmt.2019.07.037.

    Article  CAS  PubMed  Google Scholar 

  68. Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016;128:504–7. https://doi.org/10.1182/blood-2016-03-707562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:1522–31. https://doi.org/10.1182/blood-2017-08-798322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bachanova V, Marks DI, Zhang MJ, et al. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation: impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia. 2014;28:658–65. https://doi.org/10.1038/leu.2013.253.

    Article  CAS  PubMed  Google Scholar 

  71. Pfeifer H, Wassmann B, Bethge W, et al. Randomized comparison of prophylactic and minimal residual disease-triggered imatinib after allogeneic stem cell transplantation for BCR-ABL1-positive acute lymphoblastic leukemia. Leukemia. 2013;27:1254–62. https://doi.org/10.1038/leu.2012.352.

    Article  CAS  PubMed  Google Scholar 

  72. Wassmann B, Pfeifer H, Stadler M, et al. Early molecular response to posttransplantation imatinib determines outcome in MRD+ Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood. 2005;106:458–63. https://doi.org/10.1182/blood-2004-05-1746.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Jabbour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chew, S., Short, N.J., Kantarjian, H.M., Jabbour, E. (2021). Management of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. In: Faderl, S.H., Kantarjian, H.M., Estey, E. (eds) Acute Leukemias. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-53633-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53633-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53632-9

  • Online ISBN: 978-3-030-53633-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics