Skip to main content

Platelets

  • Chapter
  • First Online:
Trauma Induced Coagulopathy

Abstract

Platelets are anucleate and subcellular fragments of megakaryocytes that are biologically active and essential to coordinated coagulation, vascular integrity, and immune function. However, despite these pivotal roles of platelets, it was not until Hoffman and Monroe’s “cell-based model of hemostasis” (Hoffman and Monroe, Thromb Haemost 85(6):958–965, 2001) that investigators turned significant focus on the role of platelet biology in trauma-induced coagulopathy (TIC). Since then, a large body of investigation has focused on elucidating post-injury platelet biology as part of understanding the multidimensional TIC that encompasses various phenotypes of clot formation and lysis, vascular homeostasis, and immunoregulation associated with pathologies of bleeding, clotting, organ failure, and death after injury (Chang et al., Blood 128(8):1043–1049, 2016; Kornblith et al., J Thromb Haemost JTH 17(6):852–862, 2019; Verni et al., J Trauma Acute Care Surg 86(2):250–259, 2019; Moore et al., J Am Coll Surg 222(4):347–355, 2016; J Trauma Acute Care Surg 77(6):811–817, 2014; McGhan and Jaroszewski, Injury 43(2):129–136, 2012; Ding et al., Circ Cardiovasc Genet 7(5):615–624, 2014). Although it has long been evidenced that post-injury thrombocytopenia is associated with bleeding, progression of brain injury, and mortality (Brown and Call, J Trauma 2011;71(2 Suppl 3):S337-S342; Schnüriger et al., J Trauma Inj Infect Crit Care 68(4):881–885, 2010), multiple studies have now demonstrated that injured patients also demonstrate impaired platelet aggregation in in vitro aggregometry assays, despite having normal platelet counts (Jacoby et al., J Trauma 51(4):639–647, 2001; Kutcher et al., J Trauma Acute Care Surg 73(1):13–19, 2012; Li et al., J Trauma Acute Care Surg 80(3):440, 2016; Solomon et al., Thromb Haemost 106(08):322–330, 2011). Specific to this, this chapter will review (1) platelet biology in TIC, including discussions of thrombocytopenia, platelet activation, platelet aggregation, platelet-regulated endothelial integrity, platelet-regulated fibrinolysis, and platelet-regulated immunoactivation, (2) limitations of measuring platelet biology in TIC, (3) platelet transfusions in TIC, and (4) conclusions and future directions. In addition, this chapter intends to highlight the controversies specific to whether alterations in platelet biology after injury are physiologic or maladaptive, diagnostic issues related to the measurement of platelet biology in the trauma patient, and current uncertainties regarding the role of platelet-based treatments for hemorrhaging trauma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–65.

    Article  CAS  Google Scholar 

  2. Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010;30(12):2341–9. https://doi.org/10.1161/ATVBAHA.110.207522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Varga-Szabo D, Braun A, Nieswandt B. STIM and Orai in platelet function. Cell Calcium. 2011;50(3):270–8. https://doi.org/10.1016/j.ceca.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  4. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30. https://doi.org/10.1007/s00281-011-0286-4.

    Article  CAS  PubMed  Google Scholar 

  5. Verni CC, Davila A, Balian S, Sims CA, Diamond SL. Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma. J Trauma Acute Care Surg. 2019;86(2):250–9. https://doi.org/10.1097/TA.0000000000002140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown LM, Call MS, Margaret Knudson M, Cohen MJ. A normal platelet count may not be enough: the impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J Trauma. 2011;71(2 Suppl 3):S337–42. https://doi.org/10.1097/TA.0b013e318227f67c.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jacoby RC, Owings JT, Holmes J, Battistella FD, Gosselin RC, Paglieroni TG. Platelet activation and function after trauma. J Trauma. 2001;51(4):639–47.

    Article  CAS  Google Scholar 

  8. Kutcher ME, Redick BJ, McCreery RC, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9.

    Article  CAS  Google Scholar 

  9. Li R, Elmongy H, Sims C, Diamond SL. Ex vivo recapitulation of trauma-induced coagulopathy and assessment of trauma patient platelet function under flow using microfluidic technology. J Trauma Acute Care Surg. 2016;80(3):440. https://doi.org/10.1097/TA.0000000000000915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Solomon C, Traintinger S, Ziegler B, et al. Platelet function following trauma. Thromb Haemost. 2011;106(08):322–30. https://doi.org/10.1160/TH11-03-0175.

    Article  CAS  PubMed  Google Scholar 

  11. Sirajuddin S. Inhibition of platelet function is common following even minor injury. J Trauma Acute Care Surg. 2016;81(2):328–32.

    Article  Google Scholar 

  12. Chang R, Cardenas JC, Wade CE, Holcomb JB. Advances in the understanding of trauma-induced coagulopathy. Blood. 2016;128(8):1043–9. https://doi.org/10.1182/blood-2016-01-636423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schnüriger B, Inaba K, Abdelsayed GA, et al. The impact of platelets on the progression of traumatic intracranial hemorrhage. J Trauma Inj Infect Crit Care. 2010;68(4):881–5. https://doi.org/10.1097/TA.0b013e3181d3cc58.

    Article  Google Scholar 

  14. Kornblith LZ, Kutcher ME, Redick BJ, Calfee CS, Vilardi RF, Cohen MJ. Fibrinogen and platelet contributions to clot formation: implications for trauma resuscitation and thromboprophylaxis. J Trauma Acute Care Surg. 2014;76(2):255–63.

    Article  CAS  Google Scholar 

  15. Lordkipanidzé M. Platelet function tests. Semin Thromb Hemost. 2016;42(3):258–67. https://doi.org/10.1055/s-0035-1564834.

    Article  PubMed  Google Scholar 

  16. Lee MY, Diamond SL. A human platelet calcium calculator trained by pairwise agonist scanning. PLoS Comput Biol. 2015;11(2) https://doi.org/10.1371/journal.pcbi.1004118.

  17. Li R, Fries S, Li X, Grosser T, Diamond SL. Microfluidic assay of platelet deposition on collagen by perfusion of whole blood from healthy individuals taking aspirin. Clin Chem. 2013;59(8):1195–204. https://doi.org/10.1373/clinchem.2012.198101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Colace TV, Jobson J, Diamond SL. Relipidated tissue factor linked to collagen surfaces potentiates platelet adhesion and fibrin formation in a microfluidic model of vessel injury. Bioconjug Chem. 2011;22(10):2104–9. https://doi.org/10.1021/bc200326v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu S, Diamond SL. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay. Thromb Res. 2014;134(6):1335–43. https://doi.org/10.1016/j.thromres.2014.09.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maloney SF, Brass LF, Diamond SL. P2Y12 or P2Y1 inhibitors reduce platelet deposition in a microfluidic model of thrombosis while apyrase lacks efficacy under flow conditions. Integr Biol Quant Biosci Nano Macro. 2010;2(4):183–92. https://doi.org/10.1039/b919728a.

    Article  CAS  Google Scholar 

  21. Neeves KB, Maloney SF, Fong KP, et al. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J Thromb Haemost JTH. 2008;6(12):2193–201. https://doi.org/10.1111/j.1538-7836.2008.03188.x.

    Article  CAS  PubMed  Google Scholar 

  22. Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N Engl J Med. 2008;359(12):1261–70.

    Article  CAS  Google Scholar 

  23. Kornblith LZ, Robles AJ, Conroy AS, et al. Perhaps it’s not the platelet: Ristocetin uncovers the potential role of von willebrand factor in impaired platelet aggregation following traumatic brain injury. J Trauma Acute Care Surg. 2018;85(5):873–80.

    Google Scholar 

  24. Moore HB, Moore EE, Liras IN, et al. Acute fibrinolysis shutdown after injury occurs frequently and increases mortality: a multicenter evaluation of 2,540 severely injured patients. J Am Coll Surg. 2016;222(4):347–55.

    Article  Google Scholar 

  25. Moore HB, Moore EE, Gonzalez E, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg. 2014;77(6):811–7.

    Article  CAS  Google Scholar 

  26. Moore HB, Moore EE, Gonzalez E, et al. Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock Augusta Ga. 2015;43(1):39–46.

    Article  CAS  Google Scholar 

  27. Plow EF, Collen D. The presence and release of alpha 2-antiplasmin from human platelets. Blood. 1981;58(6):1069–74.

    Article  CAS  Google Scholar 

  28. Brogren H. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood. 2004;104(13):3943–8. https://doi.org/10.1182/blood-2004-04-1439.

    Article  CAS  PubMed  Google Scholar 

  29. Moore HB, Moore EE, Chapman M. P. MP, et al. viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost JTH. 2015;13(10):1878–87.

    Article  CAS  Google Scholar 

  30. Stalker TJ, Traxler EA, Wu J, et al. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 2013;121(10):1875–85. https://doi.org/10.1182/blood-2012-09-457739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brass LF, Zhu L, Stalker TJ. Minding the gaps to promote thrombus growth and stability. J Clin Invest. 2005;115(12):3385–92.

    Article  CAS  Google Scholar 

  32. McGhan LJ, Jaroszewski DE. The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation. Injury. 2012;43(2):129–36. https://doi.org/10.1016/j.injury.2011.05.032.

    Article  PubMed  Google Scholar 

  33. Ding N, Chen G, Hoffman R, et al. TLR4 regulates platelet function and contributes to coagulation abnormality and organ injury in hemorrhagic shock and resuscitation. Circ Cardiovasc Genet. 2014;7(5):615–24. https://doi.org/10.1161/CIRCGENETICS.113.000398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benhamou Y, Favre J, Musette P, et al. Toll-like receptors 4 contribute to endothelial injury and inflammation in hemorrhagic shock in mice. Crit Care Med. 2009;37(5):1724–8. https://doi.org/10.1097/CCM.0b013e31819da805.

    Article  CAS  PubMed  Google Scholar 

  35. Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 125(12):4638–54. https://doi.org/10.1172/JCI81660.

  36. Vogel S, Rath D, Borst O, et al. Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes. Biochem Biophys Res Commun. 2016;478(1):143–8. https://doi.org/10.1016/j.bbrc.2016.07.078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zipperle J, Altenburger K, Ponschab M, et al. Potential role of platelet-leukocyte aggregation in trauma-induced coagulopathy: ex vivo findings. J Trauma Acute Care Surg. 2017;82(5):921–6. https://doi.org/10.1097/TA.0000000000001410.

    Article  PubMed  Google Scholar 

  38. Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet interaction with innate immune cells. Transfus Med Hemother. 2016;43(2):78–88. https://doi.org/10.1159/000444807.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kaplan ZS, Zarpellon A, Alwis I, et al. Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4. Nat Commun. 2015;6:7835. https://doi.org/10.1038/ncomms8835.

    Article  PubMed  Google Scholar 

  40. Dyer MR, Alexander W, Hassoune A, et al. Platelet-derived extracellular vesicles released after trauma promote hemostasis and contribute to DVT in mice. J Thromb Haemost JTH. 2019; https://doi.org/10.1111/jth.14563.

  41. Dyer MR, Chen Q, Haldeman S, et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. 2018;8(1):2068. https://doi.org/10.1038/s41598-018-20479-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stark K, Philippi V, Stockhausen S, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128(20):2435–49. https://doi.org/10.1182/blood-2016-04-710632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shih L, Kaplan D, Kraiss LW, et al. Platelet-monocyte aggregates and c-reactive protein are associated with VTE in older surgical patients. Sci Rep. 2016;6:27478.

    Article  CAS  Google Scholar 

  44. Schrottmaier WC, Kral JB, Badrnya S, Assinger A. Aspirin and P2Y12 inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb Haemost. 2015;114(09):478–789. https://doi.org/10.1160/TH14-11-0943.

    Article  PubMed  Google Scholar 

  45. Johansson PI, Sørensen AM, Perner A, et al. High sCD40L levels early after trauma are associated with enhanced shock, sympathoadrenal activation, tissue and endothelial damage, coagulopathy and mortality. J Thromb Haemost JTH. 2012;10(2):207–16. https://doi.org/10.1111/j.1538-7836.2011.04589.x.

    Article  CAS  PubMed  Google Scholar 

  46. Kornblith LZ, Moore HB, Cohen MJ. Trauma-induced coagulopathy: the past, present, and future. J Thromb Haemost JTH. 2019;17(6):852–62. https://doi.org/10.1111/jth.14450.

    Article  PubMed  Google Scholar 

  47. Holcomb JB, Wade CE, Michalek JE, et al. Increased plasma and platelet to red blood cell ratios improves outcome in 466 massively transfused civilian trauma patients. Trans Meet Am Surg Assoc. 2008;126:97–108. https://doi.org/10.1097/SLA.0b013e318185a9ad.

    Article  Google Scholar 

  48. Gunter OL, Au BK, Isbell JM, Mowery NT, Young PP, Cotton BA. Optimizing outcomes in damage control resuscitation: identifying blood product ratios associated with improved survival. J Trauma Inj Infect Crit Care. 2008;65(3):527–34. https://doi.org/10.1097/TA.0b013e3181826ddf.

    Article  Google Scholar 

  49. Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471. https://doi.org/10.1001/jama.2015.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cardenas JC, Zhang X, Fox EE, et al. Platelet transfusions improve hemostasis and survival in a substudy of the prospective, randomized PROPPR trial. Blood Adv. 2018;2(14):1696–704. https://doi.org/10.1182/bloodadvances.2018017699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vulliamy P, Gillespie S, Gall LS, Green L, Brohi K, Davenport RA. Platelet transfusions reduce fibrinolysis but do not restore platelet function during trauma hemorrhage. J Trauma Acute Care Surg. 2017;83(3):388–97. https://doi.org/10.1097/TA.0000000000001520.

    Article  PubMed  Google Scholar 

  52. Henriksen HH, Grand AG, Viggers S, et al. Impact of blood products on platelet function in patients with traumatic injuries: a translational study. J Surg Res. 2017;214:154–61. https://doi.org/10.1016/j.jss.2017.02.037.

    Article  PubMed  Google Scholar 

  53. Kornblith LZ, Decker A, Conroy AS, et al. It’s About Time: Transfusion Effects on Post-Injury Platelet Aggregation Over Time. J Trauma Acute Care Surg. 2019; Publish Ahead of Print; https://doi.org/10.1097/TA.0000000000002459.

  54. Lee MY, Verni CC, Herbig BA, Diamond SL. Soluble fibrin causes an acquired platelet glycoprotein VI signaling defect: implications for coagulopathy. J Thromb Haemost JTH. 2017;15(12):2396–407. https://doi.org/10.1111/jth.13863.

    Article  CAS  PubMed  Google Scholar 

  55. Etchill EW, Myers SP, Raval JS, Hassoune A, SenGupta A, Neal MD. Platelet transfusion in critical care and surgery: evidence-based review of contemporary practice and future directions. Shock. 2017;47(5):537–49. https://doi.org/10.1097/SHK.0000000000000794.

    Article  PubMed  Google Scholar 

  56. Baharoglu MI, Cordonnier C, Salman RA-S, et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet. 2016;387(10038):2605–13. https://doi.org/10.1016/S0140-6736(16)30392-0.

    Article  PubMed  Google Scholar 

  57. Kornblith LZ, Robles AJ, Conroy AS, et al. Predictors of postinjury acute respiratory distress syndrome: lung injury persists in the era of hemostatic resuscitation. J Trauma Acute Care Surg. 2019;87(2):371–8. https://doi.org/10.1097/TA.0000000000002331.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hendrickson CM, Howard BM, Kornblith LZ, et al. The acute respiratory distress syndrome following isolated severe traumatic brain injury. J Trauma Acute Care Surg. 2016;80(6):989–97. https://doi.org/10.1097/TA.0000000000000982.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Howard BM, Kornblith LZ, Hendrickson CM, et al. Differences in degree, differences in kind: characterizing lung injury in trauma. J Trauma Acute Care Surg. 2015;78(4):735–41. https://doi.org/10.1097/TA.0000000000000583.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stettler GR, Moore EE, Moore HB, et al. Platelet ADP receptor inhibition provides no advantage in predicting need for platelet transfusion or massive transfusion. Surgery. 2017;162(6):1286–94. https://doi.org/10.1016/j.surg.2017.07.022.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gonzalez E, Moore EE, Moore HB, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy. Ann Surg. 2016;263(6):1051–9. https://doi.org/10.1097/SLA.0000000000001608.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dyer MR, Hickman D, Luc N, et al. Intravenous administration of synthetic platelets (SynthoPlate™) in a mouse liver injury model of uncontrolled hemorrhage improves hemostasis. J Trauma Acute Care Surg. 2018;84(6):917–23. https://doi.org/10.1097/TA.0000000000001893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miyazawa B, Trivedi A, Togarrati PP, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg. 2019;86(6):931–42. https://doi.org/10.1097/TA.0000000000002230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary A. Matthay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matthay, Z.A., Kornblith, L.Z. (2021). Platelets. In: Moore, H.B., Neal, M.D., Moore, E.E. (eds) Trauma Induced Coagulopathy. Springer, Cham. https://doi.org/10.1007/978-3-030-53606-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53606-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53605-3

  • Online ISBN: 978-3-030-53606-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics