Skip to main content

Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12096))

Included in the following conference series:

Abstract

The goal of automatic algorithm configuration is to recommend good parameter settings for an algorithm or solver on a per-instance basis, i.e., for the specific problem instance being solved. Realtime algorithm configuration is a practically motivated variant of algorithm configuration, in which the problem instances arrive in a sequential manner and high-quality configurations must be chosen during runtime. We model the realtime algorithm configuration problem as an extended version of the recently introduced contextual preselection bandit problem. Our approach combines a method for selecting configurations from a pool of candidates with a surrogate configuration generation procedure based on a genetic crossover procedure. In contrast to existing methods for realtime algorithm configuration, the approach based on contextual preselection bandits allows for the incorporation of problem instance features as well as parameterizations of algorithms. We test our algorithm on different realtime algorithm configuration scenarios and find that it outperforms the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A direct comparison of CPPL and ReACTR is not provided on the Glucose solver with the power-law SAT instance set. Even the first problem instance of this set could not be solved by Glucose within 24 h.

References

  1. Ansótegui, C., Malitsky, Y., Samulowitz, H., Sellmann, M., Tierney, K.: Model-based genetic algorithms for algorithm configuration. In: IJCAI (2015)

    Google Scholar 

  2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: International Conference on Principles and Practice of Constraint Programming (CP), pp. 142–157 (2009)

    Google Scholar 

  3. Audemard, G.: Glucose and syrup in the SAT race 2015. In: SAT Competition 2015 (2015)

    Google Scholar 

  4. Balafrej, A., Bessiere, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In: IJCAI (2015)

    Google Scholar 

  5. Balcan, M.F., Sandholm, T., Vitercik, E.: Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees. arXiv preprint arXiv:1905.10819 (2019)

  6. Bengs, V., Hüllermeier, E.: Preselection Bandits under the Plackett-Luce model. arXiv preprint arXiv:1907.06123 (2019)

  7. Biedenkapp, A., Bozkurt, H.F., Eimer, T., Hutter, F., Lindauer, M.: Dynamic algorithm configuration: foundation of a new meta-algorithmic framework. In: ECAI (2020)

    Google Scholar 

  8. Biere, A.: CaDiCaL at the SAT race 2019. In: SAT Race 2019 - Solver and Benchmark Descriptions, p. 2 (2018)

    Google Scholar 

  9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Conference on Genetic and Evolutionary Computation (GECCO), pp. 11–18 (2002)

    Google Scholar 

  10. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9_13

    Chapter  Google Scholar 

  11. Bischl, B., et al.: ASlib: a benchmark library for algorithm selection. Artif. Intell. 237, 41–58 (2016)

    Article  MathSciNet  Google Scholar 

  12. Busa-Fekete, R., Hüllermeier, E., El Mesaoudi-Paul, A.: Preference-Based Online Learning with Dueling Bandits: A Survey. arXiv preprint arXiv:1807.11398 (2018)

  13. Cheng, W., Hüllermeier, E., Dembczynski, K.: Label ranking methods based on the Plackett-Luce model. In: ICML, pp. 215–222 (2010)

    Google Scholar 

  14. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of exploration applied to search heuristic selection. In: AAAI (2005)

    Google Scholar 

  15. El Mesaoudi-Paul, A., Bengs, V., Hüllermeier, E.: Online preselection with context information under the Plackett-Luce model. arXiv preprint arXiv:2002.04275 (2020)

  16. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.J.: ReACTR: realtime algorithm configuration through tournament rankings. In: IJCAI (2015)

    Google Scholar 

  17. Fitzgerald, T., Malitsky, Y., O’Sullivan, B.J., Tierney, K.: ReACT: real-time algorithm configuration through tournaments. In: Annual Symposium on Combinatorial Search (SoCS) (2014)

    Google Scholar 

  18. Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.: Phase transitions for scale-free SAT formulas. In: AAAI, pp. 3893–3899 (2017)

    Google Scholar 

  19. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem with unbounded losses. Ann. Math. Artif. Intell. 61, 49–86 (2011). https://doi.org/10.1007/s10472-011-9228-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator. In: IJCAI, pp. 1952–1958 (2015)

    Google Scholar 

  21. Guo, S., Sanner, S., Graepel, T., Buntine, W.: Score-based Bayesian skill learning. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 106–121. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33460-3_12

    Chapter  Google Scholar 

  22. Hoffman, M.D., Brochu, E., de Freitas, N.: Portfolio allocation for Bayesian optimization. In: UAI (2010)

    Google Scholar 

  23. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: LION, pp. 507–523 (2011)

    Google Scholar 

  24. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    Article  Google Scholar 

  25. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm runtime prediction: methods & evaluation. Artif. Intell. 206, 79–111 (2014)

    Article  MathSciNet  Google Scholar 

  26. IBM: CIBM ILOG CPLEX Optimization Studio: CPLEX User’s Manual (2016). https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf

  27. Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. In: AISTATS, pp. 240–248 (2016)

    Google Scholar 

  28. Kleinberg, R., Leyton-Brown, K., Lucier, B.: Efficiency through procrastination: approximately optimal algorithm configuration with runtime guarantees. In: IJCAI, vol. 3, p. 1 (2017)

    Google Scholar 

  29. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Luce, R.D.: Individual Choice Behavior: A Theoretical Analysis. Wiley, Hoboken (1959)

    MATH  Google Scholar 

  31. Malitsky, Y., Sellmann, M.: Instance-specific algorithm configuration as a method for non-model-based portfolio generation. In: International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR) (2012)

    Google Scholar 

  32. Maron, O., Moore, A.W.: Hoeffding races: accelerating model selection search for classification and function approximation. In: NIPS, pp. 59–66 (1993)

    Google Scholar 

  33. Phillips, M., Narayanan, V., Aine, S., Likhachev, M.: Efficient search with an ensemble of heuristics. In: IJCAI (2015)

    Google Scholar 

  34. Plackett, R.: The analysis of Permutations. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 24(1), 193–202 (1975)

    Google Scholar 

  35. Santos, H., Toffolo, T.: Python MIP: Modeling Examples (2018–2019). https://engineering.purdue.edu/~mark/puthesis/faq/cite-url/. Accessed 23 Jan 2020

  36. Schäfer, D., Hüllermeier, E.: Dyad ranking using Plackett-Luce models based on joint feature representations. Mach. Learn. 107(5), 903–941 (2018). https://doi.org/10.1007/s10994-017-5694-9

    Article  MathSciNet  MATH  Google Scholar 

  37. Shang, X., Kaufmann, E., Valko, M.: A simple dynamic bandit algorithm for hyper-parameter tuning. In: Workshop on Automated Machine Learning at ICML, June 2019

    Google Scholar 

  38. St-Pierre, D.L., Teytaud, O.: The Nash and the bandit approaches for adversarial portfolios. In: IEEE Conference on Computational Intelligence and Games, pp. 1–7 (2014)

    Google Scholar 

  39. Tavakol, M., Mair, S., Morik, K.: HyperUCB: hyperparameter optimization using contextual bandits (2019)

    Google Scholar 

  40. Wang, J., Tropper, C.: Optimizing time warp simulation with reinforcement learning techniques. In: Winter Simulation Conference, pp. 577–584 (2007)

    Google Scholar 

  41. Yue, Y., Joachims, T.: Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of International Conference on Machine Learning (ICML), pp. 1201–1208 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the German Research Foundation (DFG) under grant HU 1284/13-1. This work was also partly supported by the German Federal Ministry of Economics and Technology (BMWi) under grant ZIM ZF4622601LF8. Moreover, the authors would like to thank the Paderborn Center for Parallel Computation (PC\(^2\)) for the use of the OCuLUS cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Bengs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Mesaoudi-Paul, A., Weiß, D., Bengs, V., Hüllermeier, E., Tierney, K. (2020). Pool-Based Realtime Algorithm Configuration: A Preselection Bandit Approach. In: Kotsireas, I., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2020. Lecture Notes in Computer Science(), vol 12096. Springer, Cham. https://doi.org/10.1007/978-3-030-53552-0_22

Download citation

Publish with us

Policies and ethics