Skip to main content

A Survey of Languages for Formalizing Mathematics

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12236)

Abstract

In order to work with mathematical content in computer systems, it is necessary to represent it in formal languages. Ideally, these are supported by tools that verify the correctness of the content, allow computing with it, and produce human-readable documents. These goals are challenging to combine and state-of-the-art tools typically have to make difficult compromises.

In this paper we discuss languages that have been created for this purpose, including logical languages of proof assistants and other formal systems, semi-formal languages, intermediate languages for exchanging mathematical knowledge, and language frameworks that allow building customized languages.

We evaluate their advantages based on our experience in designing and applying languages and tools for formalizing mathematics. We reach the conclusion that no existing language is truly good enough yet and derive ideas for possible future improvements.

C. Kaliszyk—Supported by ERC starting grant no. 714034 SMART.

F. Rabe—Supported by DFG grant RA-1872/3-1 OAF and EU grant Horizon 2020 ERI 676541 OpenDreamKit.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-53518-6_9
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-53518-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Ausbrooks, R., et al.: Mathematical Markup Language (MathML) Version 3.0. Technical report, World Wide Web Consortium (2010). http://www.w3.org/TR/MathML3

  2. Abrial, J.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Arthan, R.: ProofPower. http://www.lemma-one.com/ProofPower/

  4. Asperti, A., Coen, C.S., Tassi, E., Zacchiroli, S.: Crafting a proof assistant. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74464-1_2

    CrossRef  Google Scholar 

  5. Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaetano, M., Kohlhase, M.: The Open Math Standard, Version 2.0. Technical report, The Open Math Society (2004). http://www.openmath.org/standard/om20

  6. Boespflug, M., Carbonneaux, Q., Hermant, O.: The \(\lambda \varPi \)-calculus modulo as a universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)

    Google Scholar 

  7. Brown, C., Kaliszyk, C., Pąk, K.: Higher-order Tarski Grothendieck as a foundation for formal proof. In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) Interactive Theorem Proving. LIPIcs, vol. 141, pp. 9:1–9:16 (2019)

    Google Scholar 

  8. Berčič, K., Kohlhase, M., Rabe, F.: Towards a unified mathematical data infrastructure: database and interface generation. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 28–43. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_3

    CrossRef  Google Scholar 

  9. Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 – the core of the TPTP language for higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_41

    CrossRef  Google Scholar 

  10. Constable, R., et al.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall, Upper Saddle River (1986)

    Google Scholar 

  11. Curry, H., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)

    MATH  Google Scholar 

  12. Cramer, M., Fisseni, B., Koepke, P., Kühlwein, D., Schröder, B., Veldman, J.: The Naproche project controlled natural language proof checking of mathematical texts. In: Fuchs, N.E. (ed.) CNL 2009. LNCS (LNAI), vol. 5972, pp. 170–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14418-9_11

    CrossRef  Google Scholar 

  13. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2/3), 95–120 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project abstract: logic atlas and integrator (LATIN). In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp. 289–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22673-1_24

    CrossRef  Google Scholar 

  15. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(1), 56–68 (1940)

    MathSciNet  MATH  Google Scholar 

  16. Coq Development Team: The Coq proof assistant: reference manual. Technical report, INRIA (2015)

    Google Scholar 

  17. Dunchev, C., Guidi, F., Sacerdoti Coen, C., Tassi, E.: ELPI: fast, embeddable, \(\lambda \)prolog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 460–468. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_32

    CrossRef  Google Scholar 

  18. Dehaye, P.-O., et al.: Interoperability in the OpenDreamKit project: the math-in-the-middle approach. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 117–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42547-4_9

    CrossRef  Google Scholar 

  19. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

    CrossRef  Google Scholar 

  20. Common Logic editors: Common Logic (CL) – A framework for a family of logic-based languages. Technical Report 24707, ISO/IEC (2007)

    Google Scholar 

  21. Farmer, W., Guttman, J., Thayer, F.: IMPS: an interactive mathematical proof system. J. Autom. Reason. 11(2), 213–248 (1993)

    MATH  Google Scholar 

  22. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_14

    CrossRef  Google Scholar 

  23. Ganesalingam, M.: The language of mathematics. In: Ganesalingam, M. (ed.) The Language of Mathematics. LNCS, vol. 7805, pp. 17–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37012-0_2

    MATH  CrossRef  Google Scholar 

  24. Ginev, D., Corneli, J.: NNexus reloaded. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 423–426. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_31

    CrossRef  Google Scholar 

  25. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_23

    CrossRef  Google Scholar 

  26. Ginev, D., et al.: The SMGloM project and system: towards a terminology and ontology for mathematics. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp. 451–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3_58

    CrossRef  Google Scholar 

  27. Gauthier, T., Kaliszyk, C.: Sharing HOL4 and HOL light proof knowledge. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 372–386. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_26

    MATH  CrossRef  Google Scholar 

  28. Gauthier, T., Kaliszyk, C.: Aligning concepts across proof assistant libraries. J. Symb. Comput. 90, 89–123 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Hales, T.: Dense Sphere Packings: A Blueprint for Formal Proofs. London Mathematical Society Lecture Note Series, vol. 400. Cambridge University Press (2012)

    Google Scholar 

  30. Hales, T.: Developments in formal proofs. Séminaire Bourbaki, 1086, 2013–2014. arxiv.org/abs/1408.6474

  31. Hales, T.: The formal abstracts project (2017). https://formalabstracts.github.io/

  32. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031814

    CrossRef  Google Scholar 

  33. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach. 40(1), 143–184 (1993)

    MathSciNet  MATH  Google Scholar 

  34. HOL4 development team. https://hol-theorem-prover.org/

  35. Howard, W.: The formulas-as-types notion of construction. In: To, H.B. (ed.) Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, Cambridge (1980)

    Google Scholar 

  36. Horn, P., Roozemond, D.: OpenMath in SCIEnce: SCSCP and POPCORN. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) CICM 2009. LNCS (LNAI), vol. 5625, pp. 474–479. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02614-0_38

    CrossRef  Google Scholar 

  37. Horozal, F., Rabe, F.: Formal logic definitions for interchange languages. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 171–186. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_11

    CrossRef  Google Scholar 

  38. Humayoun, M.: Developing system MathNat for automatic formalization of mathematical texts. Ph.D. thesis, Université de Grenoble (2012)

    Google Scholar 

  39. Hurd, J.: OpenTheory: package management for higher order logic theories. In: Dos Reis, G., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems, pp. 31–37. ACM (2009)

    Google Scholar 

  40. Iancu, M., Kohlhase, M., Rabe, F.: Translating the Mizar Mathematical Library into OMDoc format. Technical Report KWARC Report-01/11, Jacobs University Bremen (2011)

    Google Scholar 

  41. Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM Trans. Comput. Syst. 32(1), 2 (2014)

    Google Scholar 

  42. Kaliszyk, C., Kohlhase, M., Müller, D., Rabe, F.: A standard for aligning mathematical concepts. In: Kohlhase, A., et al. (eds.) Work in Progress at CICM 2016, pp. 229–244. CEUR-WS.org (2016)

    Google Scholar 

  43. Kaufmann, M., Manolios, P., Moore, J.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  44. Kohlhase, M., Müller, D., Owre, S., Rabe, F.: Making PVS accessible to generic services by interpretation in a universal format. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 319–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_21

    CrossRef  Google Scholar 

  45. Kohlhase, M., et al.: Knowledge-based interoperability for mathematical software systems. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 195–210. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72453-9_14

    CrossRef  Google Scholar 

  46. Kofler, K., Neumaier, A.: DynGenPar – a dynamic generalized parser for common mathematical language. In: Jeuring, J., et al. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 386–401. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31374-5_26

    CrossRef  Google Scholar 

  47. Knuth, D.: Literate programming. Comput. J. 27(2), 97–111 (1984)

    MATH  Google Scholar 

  48. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents [version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006). https://doi.org/10.1007/11826095

    CrossRef  Google Scholar 

  49. Kohlhase, M.: Using as a semantic markup format. Math. Comput. Sci. 2(2), 279–304 (2008)

    Google Scholar 

  50. Kaliszyk, C., Pąk, K.: Semantics of Mizar as an Isabelle object logic. J. Autom. Reason. 63(3), 557–595 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Kaliszyk, C., Pąk, K.: Declarative proof translation (short paper). In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference on Interactive Theorem Proving (ITP 2019). LIPIcs, vol. 141, pp. 35:1–35:7 (2019)

    Google Scholar 

  52. Kamp, H., Reyle, U.: From Discourse to Logic. Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory, Studies in Linguistics and Philosophy, vol. 42. Springer, Heidelberg (1993). https://doi.org/10.1007/978-94-017-1616-1

    CrossRef  Google Scholar 

  53. Kaliszyk, C., Rabe, F.: Towards knowledge management for HOL light. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 357–372. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_26

    CrossRef  Google Scholar 

  54. Kohlhase, M., Rabe, F.: QED reloaded: towards a pluralistic formal library of mathematical knowledge. J. Form. Reason. 9(1), 201–234 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Kohlhase, M., Rabe, F.: Experiences from Exporting Major Proof Assistant Libraries (2020). https://kwarc.info/people/frabe/Research/KR_oafexp_20.pdf

  56. Kaliszyk, C., Rabe, F., Sutcliffe, G.: TH1: the TPTP typed higher-order form with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Workshop on Practical Aspects of Automated Reasoning, pp. 41–55 (2016)

    Google Scholar 

  57. Kohlhase, M., Rabe, F., Sacerdoti Coen, C., Schaefer, J.: Logic-independent proof search in logical frameworks (short paper). In: Peltier, N., Sofronie-Stokkermans, V. (ed.) Automated Reasoning, vol. 12166, pp. 395–401. Springer (2020)

    Google Scholar 

  58. Kohlhase, M., Rabe, F., Wenzel, M.: Making Isabelle Content Accessible in Knowledge in Representation Formats (2020). https://kwarc.info/people/frabe/Research/KRW_isabelle_19.pdf

  59. Kohlhase, M., Schaefer, J.: GF + MMT = GLF - from language to semantics through LF. In: Miller, D., Scagnetto, I. (eds.) Logical Frameworks and Meta-Languages: Theory and Practice, pp. 24–39. Open Publishing Association (2019)

    Google Scholar 

  60. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statistical and semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_2

    CrossRef  Google Scholar 

  61. Kamareddine, F., Wells, J.: Computerizing mathematical text with MathLang. In: Ayala-Rincón, M., Haeusler, E. (eds.) Logical and Semantic Frameworks, with Applications, pp. 5–30. ENTCS (2008)

    Google Scholar 

  62. Kamareddine, F., Wells, J., Zengler, C., Barendregt, H.: Computerising mathematical text. In: Siekmann, J. (ed.) Computational Logic. Elsevier (2014)

    Google Scholar 

  63. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)

    Google Scholar 

  64. Linton, S.: GAP: groups, algorithms, programming. ACM Commun. Comput. Algebr. 41(3), 108–109 (2007)

    Google Scholar 

  65. Megill, N.: Metamath: A Computer Language for Pure Mathematics. Lulu Press, Morrisville (2007)

    Google Scholar 

  66. Milner, R.: Logic for computable functions: descriptions of a machine implementation. ACM SIGPLAN Not. 7, 1–6 (1972)

    Google Scholar 

  67. Martin-Löf, P.: An intuitionistic theory of types: predicative part. In: Proceedings of the ’73 Logic Colloquium, pp. 73–118. North-Holland (1974)

    Google Scholar 

  68. Miller, D.A., Nadathur, G.: Higher-order logic programming. In: Shapiro, E. (ed.) ICLP 1986. LNCS, vol. 225, pp. 448–462. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16492-8_94

    CrossRef  Google Scholar 

  69. Müller, D., Rabe, F.: Rapid prototyping formal systems in MMT: case studies. In: Miller, D., Scagnetto, I. (eds.) Logical Frameworks and Meta-languages: Theory and Practice, pp. 40–54 (2019)

    Google Scholar 

  70. Müller, D., Rabe, F., Kohlhase, M.: Theories as types. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 575–590. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_38

    CrossRef  Google Scholar 

  71. Müller, D., Rothgang, C., Liu, Y., Rabe, F.: Alignment-based translations across formal systems using interface theories. In: Dubois, C., Woltzenlogel Paleo, B. (eds.) Proof eXchange for Theorem Proving, pp. 77–93. Open Publishing Association (2017)

    Google Scholar 

  72. Müller, D., Rabe, F., Sacerdoti Coen, C.: The Coq library as a theory graph. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 171–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_12

    CrossRef  Google Scholar 

  73. Naumowicz, A.: SAT-enhanced Mizar proof checking. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 449–452. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_37

    CrossRef  Google Scholar 

  74. Norell, U.: The Agda WiKi (2005). http://wiki.portal.chalmers.se/agda

  75. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL—A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    MATH  CrossRef  Google Scholar 

  76. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_217

    CrossRef  Google Scholar 

  77. Paulson, L.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0030541

    MATH  CrossRef  Google Scholar 

  78. Paulson, L., Coen, M.: Zermelo-Fraenkel Set Theory. Isabelle distribution, ZF/ZF.thy (1993)

    Google Scholar 

  79. Pfenning, F., Schürmann, C.: System description: Twelf - a meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) Automated Deduction, pp. 202–206 (1999)

    Google Scholar 

  80. Rabe, F.: A logical framework combining model and proof theory. Math. Struct. Comput. Sci. 23(5), 945–1001 (2013)

    MathSciNet  MATH  Google Scholar 

  81. Rabe, F.: How to identify, translate, and combine logics? J. Log. Comput. 27(6), 1753–1798 (2017)

    MathSciNet  MATH  Google Scholar 

  82. Rabe, F.: A Modular type reconstruction algorithm. ACM Trans. Comput. Log. 19(4), 1–43 (2018)

    MathSciNet  MATH  Google Scholar 

  83. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI Publications, Stanford (2011)

    Google Scholar 

  84. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)

    MathSciNet  MATH  Google Scholar 

  85. Rabe, F., Schürmann, C.: A practical module system for LF. In: Cheney, J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press (2009)

    Google Scholar 

  86. Stein, W., et al.: Sage Mathematics Software. The Sage Development Team (2013). http://www.sagemath.org

  87. Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_32

    CrossRef  Google Scholar 

  88. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF Parts, v3.5.0. J. Autom. Reason. 43(4), 337–362 (2009)

    Google Scholar 

  89. Trybulec, A., Blair, H.: Computer assisted reasoning with MIZAR. In: Joshi, A. (eds.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 26–28. Morgan Kaufmann (1985)

    Google Scholar 

  90. Wenzel, M.: Isabelle as document-oriented proof assistant. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS (LNAI), vol. 6824, pp. 244–259. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22673-1_17

    CrossRef  Google Scholar 

  91. Wiedijk, F.: The QED manifesto revisited. In: From Insight to Proof, Festschrift in Honour of Andrzej Trybulec, pp. 121–133 (2007)

    Google Scholar 

  92. Windsteiger, W.: Theorema 2.0: a system for mathematical theory exploration. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 49–52. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_9

    MATH  CrossRef  Google Scholar 

  93. Wiesing, T., Kohlhase, M., Rabe, F.: Virtual theories – a uniform interface to mathematical knowledge bases. In: Blömer, J., Kotsireas, I.S., Kutsia, T., Simos, D.E. (eds.) MACIS 2017. LNCS, vol. 10693, pp. 243–257. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72453-9_17

    MATH  CrossRef  Google Scholar 

  94. Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of informal to formal mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255–270. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96812-4_22

    MATH  CrossRef  Google Scholar 

  95. Wolfram. Mathematica (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Rabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kaliszyk, C., Rabe, F. (2020). A Survey of Languages for Formalizing Mathematics. In: Benzmüller, C., Miller, B. (eds) Intelligent Computer Mathematics. CICM 2020. Lecture Notes in Computer Science(), vol 12236. Springer, Cham. https://doi.org/10.1007/978-3-030-53518-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53518-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53517-9

  • Online ISBN: 978-3-030-53518-6

  • eBook Packages: Computer ScienceComputer Science (R0)