Abstract
We describe several datasets and first experiments with creating conjectures by neural methods. The datasets are based on the Mizar Mathematical Library processed in several forms and the problems extracted from it by the MPTP system and proved by the E prover using the ENIGMA guidance. The conjecturing experiments use the Transformer architecture and in particular its GPT-2 implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
We used E with 6 s time limit and its auto-schedule mode for this initial check.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
References
Brown, C.E., Gauthier, T.: Self-learned formula synthesis in set theory. CoRR, abs/1912.01525 (2019)
ChvalovskÃœ, K., Jakubův, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 197â215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_12
Colton, S.: Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer, London (2012). https://doi.org/10.1007/978-1-4471-0147-5
Fajtlowicz, S.: On conjectures of Graffiti. Ann. Discrete Math. 72(1â3), 113â118 (1988)
Gauthier, T.: Deep reinforcement learning in HOL4. CoRR, abs/1910.11797 (2019)
Gauthier, T., Kaliszyk, C., Urban, J.: Initial experiments with statistical conjecturing over large formal corpora. In: CICM 2016 WiP Proceedings, pp. 219â228 (2016)
Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108â122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_9
Kaliszyk, C., Urban, J., VyskoÄil, J.: Automating formalization by statistical and semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 12â27. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_2
Kaliszyk, C., Urban, J., VyskoÄil, J.: Learning to parse on aligned corpora (Rough Diamond). In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 227â233. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_15
Lenat, D.B.: AM: an artificial intelligence approach to discovery in mathematics as heuristic search. Ph.D thesis, Stanford (1976)
Piotrowski, B., Urban, J.: Stateful Premise Selection by Recurrent Neural Networks (2020)
Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)
Schulz, S.: System description: EÂ 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735â743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49
Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346â360. Springer, Heidelberg (2006). https://doi.org/10.1007/11618027_23
Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reasoning 37(1â2), 21â43 (2006)
Wang, Q., Brown, C.E., Kaliszyk, C., Urban, J.: Exploration of neural machine translation in autoformalization of mathematics in Mizar. In: CPP, pp. 85â98 (2020)
Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of informal to formal mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255â270. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96812-4_22
Funding
Funded by the AI4REASON ERC Consolidator grant nr. 649043 and by the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/0000466 and the European Regional Development Fund. We thank K. ChvalovskÜ and T. Gauthier for discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Additional Data From the Experiments
A Additional Data From the Experiments
1.1 A.1 XXREAL 1:48 and its GPT-2 predictions
Following are the Mizar premises in the order proposed by GPT-2. The fifth and sixth were not needed for the ATP proof.
1.2 A.2 GROUPP_1:10 and its generalization conjectured by GPT-2
The generalization that avoids finiteness:
We donât have an ATP proof of the generalization yet. We thank algebraists Michael Kinyon and David StanovskÃœ for confirming that this generalization is provable. Based on this example StanovskÃœ commented that related Mizar theorems can be similarly generalized.
1.3 A.3 SINCOS10:17 and a false conjecture by GPT-2
GPT-2 generated the following conjecture, which is false. Along with another GPT-2 conjecture about the differentiability of sec on the interval, this results in an ATP proof of SINCOS10:17.
1.4 A.4 FUNCTOR1:9 and a GPT-2 conjecture reducing it to FUNCTOR1:7
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Urban, J., Jakubův, J. (2020). First Neural Conjecturing Datasets and Experiments. In: BenzmÌller, C., Miller, B. (eds) Intelligent Computer Mathematics. CICM 2020. Lecture Notes in Computer Science(), vol 12236. Springer, Cham. https://doi.org/10.1007/978-3-030-53518-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-53518-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-53517-9
Online ISBN: 978-3-030-53518-6
eBook Packages: Computer ScienceComputer Science (R0)