Skip to main content

First Neural Conjecturing Datasets and Experiments

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12236))

Included in the following conference series:

Abstract

We describe several datasets and first experiments with creating conjectures by neural methods. The datasets are based on the Mizar Mathematical Library processed in several forms and the problems extracted from it by the MPTP system and proved by the E prover using the ENIGMA guidance. The conjecturing experiments use the Transformer architecture and in particular its GPT-2 implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

  2. 2.

    http://aitp-conference.org/2019/abstract/AITP_2019_paper_27.pdf, http://aitp-conference.org/2020/abstract/paper_21.pdf.

  3. 3.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/.

  4. 4.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/mmlall.txt2.

  5. 5.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/html2.tar.gz.

  6. 6.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/prf2.tar.gz.

  7. 7.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/datasets/prf7.tar.gz.

  8. 8.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/, http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/models/.

  9. 9.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/premises/, http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/html2/.

  10. 10.

    http://grid01.ciirc.cvut.cz:8000/.

  11. 11.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/samples/html2/00cardmizout1_t1.

  12. 12.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preds3.tar.gz.

  13. 13.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preds5.tar.gz.

  14. 14.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preds6.tar.gz.

  15. 15.

    We used E with 6 s time limit and its auto-schedule mode for this initial check.

  16. 16.

    http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/xxreal_1.html#T48.

  17. 17.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t48_xxreal_1___5.

  18. 18.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t48_xxreal_1___5.out.

  19. 19.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddatagpt1.out.tar.gz.

  20. 20.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddatagpt1.tar.gz.

  21. 21.

    http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/groupp_1.html#T10.

  22. 22.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/out4.tar.gz.

  23. 23.

    http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/sincos10.html#T17.

  24. 24.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t17_sincos10___1.

  25. 25.

    http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/functor1.html#T9.

  26. 26.

    http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/functor1.html#T7.

  27. 27.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddata128.tar.gz.

  28. 28.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/preddata128.out.tar.gz.

  29. 29.

    http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/results/t20_borsuk_3___7__1.

  30. 30.

    http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/borsuk_3.html#R2.

References

  1. Brown, C.E., Gauthier, T.: Self-learned formula synthesis in set theory. CoRR, abs/1912.01525 (2019)

    Google Scholar 

  2. ChvalovskÃœ, K., Jakubův, J., Suda, M., Urban, J.: ENIGMA-NG: efficient neural and gradient-boosted inference guidance for E. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 197–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_12

    Chapter  Google Scholar 

  3. Colton, S.: Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer, London (2012). https://doi.org/10.1007/978-1-4471-0147-5

    Book  MATH  Google Scholar 

  4. Fajtlowicz, S.: On conjectures of Graffiti. Ann. Discrete Math. 72(1–3), 113–118 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Gauthier, T.: Deep reinforcement learning in HOL4. CoRR, abs/1910.11797 (2019)

    Google Scholar 

  6. Gauthier, T., Kaliszyk, C., Urban, J.: Initial experiments with statistical conjecturing over large formal corpora. In: CICM 2016 WiP Proceedings, pp. 219–228 (2016)

    Google Scholar 

  7. Johansson, M., Rosén, D., Smallbone, N., Claessen, K.: Hipster: integrating theory exploration in a proof assistant. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 108–122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08434-3_9

    Chapter  Google Scholar 

  8. Kaliszyk, C., Urban, J., Vyskočil, J.: Automating formalization by statistical and semantic parsing of mathematics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS, vol. 10499, pp. 12–27. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66107-0_2

    Chapter  Google Scholar 

  9. Kaliszyk, C., Urban, J., Vyskočil, J.: Learning to parse on aligned corpora (Rough Diamond). In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 227–233. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_15

    Chapter  Google Scholar 

  10. Lenat, D.B.: AM: an artificial intelligence approach to discovery in mathematics as heuristic search. Ph.D thesis, Stanford (1976)

    Google Scholar 

  11. Piotrowski, B., Urban, J.: Stateful Premise Selection by Recurrent Neural Networks (2020)

    Google Scholar 

  12. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  13. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49

    Chapter  Google Scholar 

  14. Urban, J.: XML-izing Mizar: making semantic processing and presentation of MML easy. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 346–360. Springer, Heidelberg (2006). https://doi.org/10.1007/11618027_23

    Chapter  Google Scholar 

  15. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reasoning 37(1–2), 21–43 (2006)

    MATH  Google Scholar 

  16. Wang, Q., Brown, C.E., Kaliszyk, C., Urban, J.: Exploration of neural machine translation in autoformalization of mathematics in Mizar. In: CPP, pp. 85–98 (2020)

    Google Scholar 

  17. Wang, Q., Kaliszyk, C., Urban, J.: First experiments with neural translation of informal to formal mathematics. In: Rabe, F., Farmer, W.M., Passmore, G.O., Youssef, A. (eds.) CICM 2018. LNCS (LNAI), vol. 11006, pp. 255–270. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96812-4_22

    Chapter  MATH  Google Scholar 

Download references

Funding

Funded by the AI4REASON ERC Consolidator grant nr. 649043 and by the Czech project AI&Reasoning CZ.02.1.01/0.0/0.0/15_003/0000466 and the European Regional Development Fund. We thank K. ChvalovskÜ and T. Gauthier for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Urban .

Editor information

Editors and Affiliations

A Additional Data From the Experiments

A Additional Data From the Experiments

Fig. 1.
figure 1

Dataset 2 training and loss.

1.1 A.1 XXREAL 1:48 and its GPT-2 predictions

figure e

Following are the Mizar premises in the order proposed by GPT-2. The fifth and sixth were not needed for the ATP proof.

figure f

1.2 A.2 GROUPP_1:10 and its generalization conjectured by GPT-2

figure g

The generalization that avoids finiteness:

figure h

We don’t have an ATP proof of the generalization yet. We thank algebraists Michael Kinyon and David StanovskÃœ for confirming that this generalization is provable. Based on this example StanovskÃœ commented that related Mizar theorems can be similarly generalized.

1.3 A.3 SINCOS10:17 and a false conjecture by GPT-2

figure i

GPT-2 generated the following conjecture, which is false. Along with another GPT-2 conjecture about the differentiability of sec on the interval, this results in an ATP proof of SINCOS10:17.

figure j

1.4 A.4 FUNCTOR1:9 and a GPT-2 conjecture reducing it to FUNCTOR1:7

figure k

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Urban, J., Jakubův, J. (2020). First Neural Conjecturing Datasets and Experiments. In: BenzmÌller, C., Miller, B. (eds) Intelligent Computer Mathematics. CICM 2020. Lecture Notes in Computer Science(), vol 12236. Springer, Cham. https://doi.org/10.1007/978-3-030-53518-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53518-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53517-9

  • Online ISBN: 978-3-030-53518-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics