Skip to main content

The Tactician

A Seamless, Interactive Tactic Learner and Prover for Coq

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12236)

Abstract

We present Tactician, a tactic learner and prover for the Coq Proof Assistant. Tactician helps users make tactical proof decisions while they retain control over the general proof strategy. To this end, Tactician learns from previously written tactic scripts and gives users either suggestions about the next tactic to be executed or altogether takes over the burden of proof synthesis. Tactician’s goal is to provide users with a seamless, interactive, and intuitive experience together with robust and adaptive proof automation.

This work was supported by the European Regional Development Fund under the project AI&Reasoning (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000466) and by the AI4REASON ERC Consolidator grant nr. 649043.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-53518-6_17
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-53518-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Blaauwbroek, L., Urban, J., Geuvers, H.: Tactic learning and proving for the Coq proof assistant. In: LPAR23. EPiC Series in Computing, vol. 73, pp. 138–150. EasyChair (2020)

    Google Scholar 

  2. Coq Development Team: Coq package index. https://coq.inria.fr/opam/www

  3. Coq Development Team: The Coq proof assistant, version 8.11.0, October 2019

    Google Scholar 

  4. Czajka, L., Kaliszyk, C.: Hammer for Coq: automation for dependent type theory. J. Aut. Reasoning 61(1–4), 423–453 (2018)

    CrossRef  MathSciNet  Google Scholar 

  5. Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: Learning to reason with HOL4 tactics. In: LPAR. EPiC Series in Computing, vol. 46, pp. 125–143. EasyChair (2017)

    Google Scholar 

  6. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 246–255. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_16

    CrossRef  Google Scholar 

  7. Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: a learning environment for theorem proving. In: ICLR (Poster). OpenReview.net (2019)

    Google Scholar 

  8. Komendantskaya, E., Heras, J., Grov, G.: Machine learning in proof general: interfacing interfaces. UITP. EPTCS 118, 15–41 (2012)

    CrossRef  Google Scholar 

  9. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

    CrossRef  MATH  Google Scholar 

  10. Sanchez-Stern, A., Alhessi, Y., Saul, L.K., Lerner, S.: Generating correctness proofs with neural networks. In: arXiv/CoRR. abs/1907.07794 (2019)

    Google Scholar 

  11. Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assistants. In: ICML, Proceedings of Machine Learning Research, vol. 97, pp. 6984–6994 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lasse Blaauwbroek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Blaauwbroek, L., Urban, J., Geuvers, H. (2020). The Tactician. In: Benzmüller, C., Miller, B. (eds) Intelligent Computer Mathematics. CICM 2020. Lecture Notes in Computer Science(), vol 12236. Springer, Cham. https://doi.org/10.1007/978-3-030-53518-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53518-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53517-9

  • Online ISBN: 978-3-030-53518-6

  • eBook Packages: Computer ScienceComputer Science (R0)