Skip to main content

More on Normality and Related Properties

  • Chapter
  • First Online:
Separation in Point-Free Topology
  • 450 Accesses

Abstract

Here we start with two more variants of normality. There is the perfect normality, which turns out to be a conjunction of the classical perfectness (which is slightly different in the point-free context due to the different behaviour of sublocales and subspaces) and normality; in a way it can be viewed as a weaker form of metrizability. Next we deal with the technically important collectionwise normality. Then, in the penultimate section we prove and discuss the Katětov–Tong insertion theorem, using (to advantage) the techniques of the point-free real line. We finish with a certain duality between normality and extremal disconnectedness that allows to translate several results concerning normality to facts about extremal disconnected frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [68]; see also Gilmour [114].

  2. 2.

    These are the point-free extensions of the κ-normal spaces introduced by Schepin in 1972 in [244] (and introduced as mildly normal spaces in [263]). Clearly, a space X is κ-normal if and only if Ω(X) is mildly normal.

  3. 3.

    The σ-frame ϱL consists precisely of all countable joins of regular elements of L since any finite meet of regular elements is regular by (4) in A.2.1.1.

  4. 4.

    Two subsets U and V  of X are separable if there is a continuous map such that f[U] = {1} and f[V ] = {0}; of course, this is only possible if the closures of U and V  are disjoint.

  5. 5.

    Originally announced by Tong in 1948 (the proof was, however, not published until 1952 [273]), Katětov shares the name of the theorem because of his independent version of 1951, with a simpler proof [177]. Such results have roots in Baire (1905, [8]), Hahn (1917, [134]) and Dieudonné (1944, [78]) who proved it for the real line, metrizable spaces and paracompact spaces, respectively.

  6. 6.

    Katětov relations appear in the literature under various other names such as, e.g. quasi-proximities or subordinations. They share some of the defining properties of the so-called strong relations that describe the compactifications of a frame [27].

  7. 7.

    T. Kubiak was the first to notice that several pairs of results in classical topology characterizing the concepts of normality and extremal disconnectedness show a “remarkable duality” [187] between the two concepts: each pair is identical in structure but prove facts about normal spaces on one side of the pair and about extremally disconnected spaces on the other [185]. The point-free study of this duality was undertaken in [131].

  8. 8.

    F-frames are the frames in which the open quotient of any (dense) cozero element is a C -quotient.

References

  1. R. Baire. Leçons sur les fonctions discontinues, professées au collège de France. Gauthier-Villars, Paris, 1905.

    MATH  Google Scholar 

  2. R. N. Ball, J. Walters-Wayland. C- and C -quotients in pointfree topology. Dissertationes Mathematicae (Rozprawy Mat.) 412 (2002) 1–62.

    Google Scholar 

  3. B. Banaschewski. σ-frames. Unpublished manuscript, 1980.

    Google Scholar 

  4. B. Banaschewski. Compactifications of frames. Math. Nachr. 149 (1990) 105–115.

    Article  MathSciNet  Google Scholar 

  5. B. Banaschewski. The Real Numbers in Pointfree Topology. Textos de Matemática, vol. 12. University of Coimbra, 1997.

    Google Scholar 

  6. B. Banaschewski, T. Dube, C. R. A. Gilmour, J. Walters-Wayland. Oz in pointfree topology. Quaestiones Math. 32 (2009) 215–227.

    Article  MathSciNet  Google Scholar 

  7. B. Banaschewski, C. R. A. Gilmour. Oz revisited. In: Proceedings of the Conference Categorical Methods in Algebra and Topology (ed. by H. Herrlich, H.-E. Porst), pp. 19–23. Math. Arbeitspapiere Nr. 54, Universität Bremen, 2000.

    Google Scholar 

  8. M. C. Charalambous. Dimension theory for σ-frames. J. London Math. Soc. 8 (1974) 149–160.

    Article  MathSciNet  Google Scholar 

  9. J. Dieudonné. Une généralisation des espaces compacts. J. de Math. Pures et Appl. 23 (1944) 65–76.

    MathSciNet  MATH  Google Scholar 

  10. C. H. Dowker, D. Papert. On Urysohn’s lemma. In: General Topology and its Relations to Modern Analysis and Algebra, II, pp. 111–114. Proc. Second Prague Topological Sympos., 1966. Academia, Prague, 1967.

    Google Scholar 

  11. T. Dube, O. Ighedo. More on locales in which every open sublocale is z-embedded. Topology Appl. 201 (2016) 110–123.

    Article  MathSciNet  Google Scholar 

  12. C. R. A. Gilmour. Realcompact Alexandroff spaces and regular σ-frames. Mathematical Monographs of the University of Cape Town, vol. 3. University of Cape Town, Department of Mathematics, 1985.

    Google Scholar 

  13. J. Gutiérrez García, T. Kubiak, J. Picado. Lower and upper regularizations of frame semicontinuous real functions. Algebra Universalis 60 (2009) 169–184.

    Article  MathSciNet  Google Scholar 

  14. J. Gutiérrez García, T. Kubiak, J. Picado. Localic real-valued functions: a general setting. J. Pure Appl. Algebra 213 (2009) 1064–1074.

    Article  MathSciNet  Google Scholar 

  15. J. Gutiérrez García, T. Kubiak, J. Picado. Perfectness in locales. Quaestiones Math. 40 (2017) 507–518.

    Article  MathSciNet  Google Scholar 

  16. J. Gutiérrez García, T. Kubiak, J. Picado. Perfect locales and localic real functions. Algebra Universalis 81 (2020) Art. 32, 18 pp.

    Google Scholar 

  17. J. Gutiérrez García, I. Mozo Carollo, J. Picado, J. Walters-Wayland. Hedgehog frames and a cardinal extension of normality. J. Pure Appl. Algebra 223 (2019) 2345–2370.

    Article  MathSciNet  Google Scholar 

  18. J. Gutiérrez García, J. Picado. On the algebraic representation of semicontinuity. J. Pure Appl. Algebra 210 (2007) 299–306.

    Article  MathSciNet  Google Scholar 

  19. J. Gutiérrez García, J. Picado. On the parallel between normality and extremal disconnectedness. J. Pure Appl. Algebra 218 (2014) 784–803.

    Article  MathSciNet  Google Scholar 

  20. H. Hahn. Über halbstetige und unstetige Funktionen. Sitzungsberichte Akad. Wien Abt. IIa 126 (1917) 91–110.

    MATH  Google Scholar 

  21. R. W. Heath, E. A. Michael. A property of the Sorgenfrey line. Compositio Math. 23 (1971) 185–188.

    MathSciNet  MATH  Google Scholar 

  22. O. Ighedo, M. Mugochi. On some parallelism between complete regularity and zero-dimensionality. Quaestiones Math. 41 (2018) 423–435.

    Article  MathSciNet  Google Scholar 

  23. M. Katětov. On real-valued functions in topological spaces. Fund. Math. 38 (1951) 85–91; errata ibid. 40 (1953) 203–205.

    Google Scholar 

  24. T. Kubiak. On Fuzzy Topologies. Doctoral Dissertation, Uniwersytet im. Adama Mickiewicza, Poznań, 1985.

    Google Scholar 

  25. T. Kubiak. Second open question. In: Applications of category theory to fuzzy subsets (ed. by S. E. Rodabaugh, E. P. Klement, U. Höhle), pp. 349. Kluwer, Dordrecht, 1992.

    Google Scholar 

  26. T. Kubiak. Separation axioms: extension of mappings and embedding of spaces. In: Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory (ed. by U. Höhle, S. E. Rodabaugh), pp. 433–479. The Handbooks of Fuzzy Sets Series, vol.3. Kluwer, Dordrecht, 1999.

    Google Scholar 

  27. Y.-M. Li, Z.-H. Li. Constructive insertion theorems and extension theorems on extremally disconnected frames. Algebra Universalis 44 (2000) 271–281.

    Article  MathSciNet  Google Scholar 

  28. J. Picado. A new look at localic interpolation theorems. Topology Appl. 153 (2006) 3203–3218.

    Article  MathSciNet  Google Scholar 

  29. J. Picado, A. Pultr. Frames and Locales: Topology without points. Frontiers in Mathematics, vol. 28, Springer, Basel, 2012.

    Google Scholar 

  30. J. Picado, A. Pultr. A Boolean extension of a frame and a representation of discontinuity. Quaestiones Math. 40 (2017) 1111–1125.

    Article  MathSciNet  Google Scholar 

  31. T. Plewe. Sublocale lattices. J. Pure Appl. Algebra 168 (2002) 309–326.

    Article  MathSciNet  Google Scholar 

  32. A. Pultr. Remarks on metrizable locales. Rend. Circ. Mat. Palermo (2) 6 (1984) 247–258.

    Google Scholar 

  33. E. V. Schepin. Real-valued functions, and spaces close to normal. Sib. Math. J. 13 (1972) 1182–1196.

    Google Scholar 

  34. M. Singal, A. Singal. Mildly normal spaces. Kyungpook Math. J. 13 (1973) 27–31.

    MathSciNet  MATH  Google Scholar 

  35. M. H. Stone. Boundedness properties in function-lattices. Canad. J. Math. 1 (1949) 176–186.

    Article  MathSciNet  Google Scholar 

  36. H. Tietze. Über Funktionen, die auf einer abgeschlossenen menge stetig sind. J. Reine Angew. Math. 145 (1915) 9–14.

    MathSciNet  MATH  Google Scholar 

  37. H. Tong. Some characterizations of normal and perfectly normal spaces. Duke Math. J. 19 (1952) 289–292.

    Article  MathSciNet  Google Scholar 

  38. P. S. Urysohn. Über die Mächtigkeit der zusammen hängenden Mengen. Math. Ann. 94 (1925) 262–295.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picado, J., Pultr, A. (2021). More on Normality and Related Properties. In: Separation in Point-Free Topology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-53479-0_8

Download citation

Publish with us

Policies and ethics