Skip to main content

Subfitness and Basics of Fitness

  • Chapter
  • First Online:
Separation in Point-Free Topology
  • 457 Accesses

Abstract

We can only agree with Peter Johnstone who wrote in Johnstone (Bull Amer Math Soc (N.S.) 8:41–53, 1983) that

the first person (apart of Stone) to exploit the possibility of applying lattice theory to topology was Henry Wallman.

In his article Wallman (Ann Math 39, 112–126, 1938) published in 1938 (already briefly mentioned in the Introduction), Wallman presented a compactification technically based on lattice theoretic principles, and proved that to determine the homology type of a space X one needs only the lattice of closed sets. When doing that, he needed a lattice formula substituting a sufficiently weak topological separation. His ingenious idea of the “disjunctive property”, namely the requirement that

if a ≠ b then there is a c such that precisely one of a ∧ c and b ∧ c is zero

worked very well. Thus defined concept (now called, in the dual form, the subfitness) turned out to be one of the most important weak separation properties suitable for the point-free context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are two equivalent constructions presented there, both of them, basically extending the reconstruction of a space X from Ω(X). In this section we have in mind the variant from A.3.4.2.

  2. 2.

    Isbell introduced it in [153] and refers to the locales satisfying it as unordered locales. The name T U (abbreviation for totally unordered) is due to Johnstone [161, III.1.5].

  3. 3.

    For example, one can find some interesting consequences in [204] where it appeared under the name of jointfit.

  4. 4.

    T-uniformity in [203].

References

  1. B. Banaschewski. Completion in Pointfree Topology. Lecture Notes in Mathematics and Applied Mathematics, vol. 2. University of Cape Town, 1996.

    Google Scholar 

  2. B. Banaschewski, A. Pultr. Cauchy points of uniform and nearness frames. Quaestiones Math. 19 (1996) 101–127.

    Article  MathSciNet  Google Scholar 

  3. C. H. Dowker, D. Strauss. T 1- and T 2-axioms for frames. In: Aspects of Topology (ed. by I. M. James, E. H. Kronheimer), pp. 325–335. London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985.

    Google Scholar 

  4. M. P. Fourman. T 1-spaces over topological sites. J. Pure Appl. Algebra 27 (1983) 223–224.

    Article  MathSciNet  Google Scholar 

  5. J. L. Frith. Structured frames. Doctoral dissertation. University of Cape Town, 1987.

    Google Scholar 

  6. H. Herrlich. A concept of nearness. General Topology and Appl. 4 (1974) 191–212.

    Article  MathSciNet  Google Scholar 

  7. H. Herrlich. Topologie II: Uniforme Räume. Heldermann Verlag, Berlin, 1988.

    MATH  Google Scholar 

  8. H. Herrlich, A. Pultr. Nearness, subfitness and sequential regularity. Appl. Categ. Structures 8 (2000) 67–80.

    Article  MathSciNet  Google Scholar 

  9. O. Ighedo, M. Mugochi. On some parallelism between complete regularity and zero-dimensionality. Quaestiones Math. 41 (2018) 423–435.

    Article  MathSciNet  Google Scholar 

  10. J. R. Isbell. Atomless parts of spaces. Math. Scand. 31 (1972) 5–32.

    Article  MathSciNet  Google Scholar 

  11. J. R. Isbell. Function spaces and adjoints. Math. Scand. 36 (1975) 317–339.

    Article  MathSciNet  Google Scholar 

  12. P. T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge 1982.

    Google Scholar 

  13. P. T. Johnstone. The point of pointless topology. Bull. Amer. Math. Soc. (N.S.) 8 (1983) 41–53.

    Google Scholar 

  14. P. T. Johnstone. Wallman compactification of locales. Houston J. Math. 10 (1984) 201–206.

    MathSciNet  MATH  Google Scholar 

  15. A. Joyal, M. Tierney. An Extension of the Galois Theory of Grothendieck. Mem. Amer. Math. Soc., vol. 309. Amer. Math. Soc., Providence, RI, 1984.

    Google Scholar 

  16. D. S. Macnab. Modal operators on Heyting algebras. Algebra Universalis 12 (1981) 5–29.

    Article  MathSciNet  Google Scholar 

  17. K. Morita. On the simple extension of a space with respect to a uniformity I-IV. Proc. Japan Acad. 27 (1951) 65–72; 130–137; 166–171; 632–636.

    Google Scholar 

  18. M. A. Moshier, J. Picado, A. Pultr. Generating sublocales by subsets and relations: a tangle of adjunctions. Algebra Universalis 78 (2017) 105–118.

    Article  MathSciNet  Google Scholar 

  19. J. Picado and A. Pultr. (Sub)Fit biframes and non-symmetric nearness. Topology Appl. 168 (2014) 66–81.

    Google Scholar 

  20. H. Simmons. A framework for topology. In: Logic Colloq. ’77, pp. 239–251. Stud. Logic Foundations Math., vol. 96. North-Holland, Amsterdam-New York, 1978.

    Google Scholar 

  21. H. Simmons. The lattice theoretic part of topological separation properties. Proc. Edinburgh Math. Soc. 21 (1978) 41–48.

    Article  MathSciNet  Google Scholar 

  22. H. Simmons. Regularity, fitness, and the block structure of frames. Appl. Categ. Structures 14 (2006) 1–34.

    Article  MathSciNet  Google Scholar 

  23. J. J. C. Vermeulen. Some constructive results related to compactness and the (strong) Hausdorff property for locales. In: Category Theory (ed. by A. Carboni, M. C. Pedicchio, G. Rosolini), pp. 401–409. Lecture Notes in Mathematics, vol. 1488. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  24. H. Wallman. Lattices and topological spaces. Ann. Math. 39 (1938) 112–126.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Picado, J., Pultr, A. (2021). Subfitness and Basics of Fitness. In: Separation in Point-Free Topology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-53479-0_2

Download citation

Publish with us

Policies and ethics