Skip to main content

Malignancy Risks of Dermatologic Therapies

  • Chapter
  • First Online:
Dermato-Oncology Study Guide
  • 367 Accesses

Abstract

Patients with inflammatory skin diseases such as psoriasis and atopic dermatitis may have higher risks of malignancies compared to healthy individuals regardless of their treatments. Many of the therapies used to treat inflammatory skin diseases modulate the immune system. It is important to determine whether dermatologic therapies influence the risk of malignancies in patients with psoriasis and atopic dermatitis. However, assessing the association between dermatologic therapies and malignancies is challenging because clinical trials lack adequate population sizes and long-term follow-up needed to detect clinically important differences in malignancy rates in those receiving the medication compared to placebo. This chapter synthesizes and interprets the literature on the malignancy risks of dermatologic therapies with a focus on long-term follow-up data. Dermatologic therapies discussed in this chapter include oral systemic therapies, phototherapies, and biologic therapies. This chapter will also discuss malignancy risk in special immunosuppressed populations such as organ transplant and HIV patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIDS:

Acquired immunodeficiency syndrome

BB-UVB:

Broad-band ultraviolet B

BCC:

Basal cell carcinoma

CD:

Cluster of differentiation

CI:

Confidence interval

CMM:

Cutaneous malignant melanoma

CsA:

Cyclosporine

CTCL:

Cutaneous T-cell lymphoma

EBV:

Ebstein-Barr virus

ECG:

Electrocardiogram

FDA:

Food and Drug Administration

HAART:

Highly active antiretroviral therapy

HHV:

Human Herpesvirus

HIV:

Human immunodeficiency virus

HPV:

Human papilloma virus

HR:

Hazard ratio

IARC:

International Agency for Research on Cancer

IBD:

Inflammatory bowel disease

Ig:

Immunoglobulin

IL:

Interleukin

IRR:

Incidence rate ratio

IVIG:

Intravenous immunoglobulin

MTX:

Methotrexate

nbDMARDs:

Nonbiologic disease modifying antirheumatic drugs

NB-UVB:

Narrow-band ultraviolet B

NHL:

Non-Hodgkin’s lymphoma

NIH:

National Institutes of Health

NMSC:

Nonmelanoma skin cancer

OR:

Odds ratio

PDE:

Phosphodiesterase

PSOLAR:

Psoriasis Longitudinal Assessment and Registry

PUVA:

Psoralen-ultraviolet A

PY:

Person years

RA:

Rheumatoid arthritis

RCT:

Randomized clinical trial

RR:

Risk ratio

SCC:

Squamous cell carcinoma

SEER:

Surveillance, Epidemiology, and End Results Program

SIR:

Standardized incidence rate

SLE:

Systemic lupus erythematosus

TNF:

Tumor necrosis factor

UVA:

Ultraviolet A

UVB:

Ultraviolet B

References

  1. Kimball AB, et al. Incidence rates of malignancies and hospitalized infectious events in patients with psoriasis with or without treatment and a general population in the U.S.A.: 2005-09. Br J Dermatol. 2014;170(2):366–73.

    Article  PubMed  CAS  Google Scholar 

  2. Hagstromer L, et al. Incidence of cancer among patients with atopic dermatitis. Arch Dermatol. 2005;141(9):1123–7.

    Article  PubMed  Google Scholar 

  3. Scott FI, et al. Risk of nonmelanoma skin cancer associated with the use of immunosuppressant and biologic agents in patients with a history of autoimmune disease and nonmelanoma skin cancer. JAMA Dermatol. 2016;152(2):164–72.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Polesie S, et al. Methotrexate treatment and risk for cutaneous malignant melanoma: a retrospective comparative registry-based cohort study. Br J Dermatol. 2017;176(6):1492–9.

    Article  PubMed  CAS  Google Scholar 

  5. Buchbinder R, et al. Incidence of melanoma and other malignancies among rheumatoid arthritis patients treated with methotrexate. Arthritis Rheum. 2008;59(6):794–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hoshida Y, et al. Lymphoproliferative disorders in rheumatoid arthritis: clinicopathological analysis of 76 cases in relation to methotrexate medication. J Rheumatol. 2007;34(2):322–31.

    PubMed  CAS  Google Scholar 

  7. Kamel OW, et al. Brief report: reversible lymphomas associated with Epstein-Barr virus occurring during methotrexate therapy for rheumatoid arthritis and dermatomyositis. N Engl J Med. 1993;328(18):1317–21.

    Article  PubMed  CAS  Google Scholar 

  8. Fiorentino D, et al. Risk of malignancy with systemic psoriasis treatment in the psoriasis longitudinal assessment registry. J Am Acad Dermatol. 2017;77(5):845–54. e5

    Article  PubMed  Google Scholar 

  9. Stern RS. Lymphoma risk in psoriasis: results of the PUVA follow-up study. Arch Dermatol. 2006;142(9):1132–5.

    PubMed  Google Scholar 

  10. Suzuki M, et al. Pulmonary lymphoma developed during long-term methotrexate therapy for psoriasis. Respirology. 2007;12(5):774–6.

    Article  PubMed  Google Scholar 

  11. Patel RV, et al. Treatments for psoriasis and the risk of malignancy. J Am Acad Dermatol. 2009;60(6):1001–17.

    Article  PubMed  Google Scholar 

  12. Cockburn IT, Krupp P. The risk of neoplasms in patients treated with cyclosporine A. J Autoimmun. 1989;2(5):723–31.

    Article  PubMed  CAS  Google Scholar 

  13. Paul CF, et al. Risk of malignancies in psoriasis patients treated with cyclosporine: a 5 y cohort study. J Invest Dermatol. 2003;120(2):211–6.

    Article  PubMed  CAS  Google Scholar 

  14. Muellenhoff MW, Koo JY. Cyclosporine and skin cancer: an international dermatologic perspective over 25 years of experience. A comprehensive review and pursuit to define safe use of cyclosporine in dermatology. J Dermatolog Treat. 2012;23(4):290–304.

    Article  PubMed  CAS  Google Scholar 

  15. O’Donovan P, et al. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309(5742):1871–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jiyad Z, et al. Azathioprine and risk of skin cancer in organ transplant recipients: systematic review and meta-analysis. Am J Transplant. 2016;16(12):3490–503.

    Article  PubMed  CAS  Google Scholar 

  17. Na R, et al. Iatrogenic immunosuppression and risk of non-Hodgkin lymphoma in solid organ transplantation: a population-based cohort study in Australia. Br J Haematol. 2016;174(4):550–62.

    Article  PubMed  CAS  Google Scholar 

  18. Kotlyar DS, et al. Risk of lymphoma in patients with inflammatory bowel disease treated with azathioprine and 6-mercaptopurine: a meta-analysis. Clin Gastroenterol Hepatol. 2015;13(5):847–858.e4; quiz e48–e50.

    Article  PubMed  CAS  Google Scholar 

  19. Beigel F, et al. Risk of malignancies in patients with inflammatory bowel disease treated with thiopurines or anti-TNF alpha antibodies. Pharmacoepidemiol Drug Saf. 2014;23(7):735–44.

    Article  PubMed  CAS  Google Scholar 

  20. Hagen JW, Pugliano-Mauro MA. Nonmelanoma skin cancer risk in patients with inflammatory bowel disease undergoing thiopurine therapy: a systematic review of the literature. Dermatol Surg. 2018;44(4):469–80.

    Article  PubMed  CAS  Google Scholar 

  21. Pedersen EG, et al. Risk of non-melanoma skin cancer in myasthenia patients treated with azathioprine. Eur J Neurol. 2014;21(3):454–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wang YJ, et al. Malignancy after heart transplantation under everolimus versus mycophenolate mofetil immunosuppression. Transplant Proc. 2016;48(3):969–73.

    Article  PubMed  CAS  Google Scholar 

  23. Hsiao FY, Hsu WW. Epidemiology of post-transplant malignancy in Asian renal transplant recipients: a population-based study. Int Urol Nephrol. 2014;46(4):833–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen HT, et al. Use of systemic corticosteroids and risk of esophageal cancer. Epidemiology. 2002;13(2):240–1.

    Article  PubMed  Google Scholar 

  25. Sorensen HT, et al. Skin cancers and non-hodgkin lymphoma among users of systemic glucocorticoids: a population-based cohort study. J Natl Cancer Inst. 2004;96(9):709–11.

    Article  PubMed  Google Scholar 

  26. Sorensen GV, et al. Use of glucocorticoids and risk of breast cancer: a Danish population-based case-control study. Breast Cancer Res. 2012;14(1):R21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Chen K, Craig JC, Shumack S. Oral retinoids for the prevention of skin cancers in solid organ transplant recipients: a systematic review of randomized controlled trials. Br J Dermatol. 2005;152(3):518–23.

    Article  PubMed  CAS  Google Scholar 

  28. Kadakia KC, et al. Randomized controlled trial of acitretin versus placebo in patients at high-risk for basal cell or squamous cell carcinoma of the skin (North Central Cancer Treatment Group Study 969251). Cancer. 2012;118(8):2128–37.

    Article  PubMed  CAS  Google Scholar 

  29. Cheeley J, et al. Acitretin for the treatment of cutaneous T-cell lymphoma. J Am Acad Dermatol. 2013;68(2):247–54.

    Article  PubMed  CAS  Google Scholar 

  30. Bettoli V, Zauli S, Virgili A. Retinoids in the chemoprevention of non-melanoma skin cancers: why, when and how. J Dermatolog Treat. 2013;24(3):235–7.

    Article  PubMed  CAS  Google Scholar 

  31. Nijsten TE, Stern RS. Oral retinoid use reduces cutaneous squamous cell carcinoma risk in patients with psoriasis treated with psoralen-UVA: a nested cohort study. J Am Acad Dermatol. 2003;49(4):644–50.

    Article  PubMed  Google Scholar 

  32. Hong WK, et al. 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med. 1986;315(24):1501–5.

    Article  PubMed  CAS  Google Scholar 

  33. Bhatia AK, et al. Double-blind, randomized phase 3 trial of low-dose 13-cis retinoic acid in the prevention of second primaries in head and neck cancer: long-term follow-up of a trial of the Eastern Cooperative Oncology Group-ACRIN Cancer Research Group (C0590). Cancer. 2017;123(23):4653–62.

    Article  PubMed  CAS  Google Scholar 

  34. Chen SE, et al. Isotretinoin maintenance therapy for glioblastoma: a retrospective review. J Oncol Pharm Pract. 2014;20(2):112–9.

    Article  PubMed  CAS  Google Scholar 

  35. Cash T, et al. Prolonged isotretinoin in ultra high-risk neuroblastoma. J Pediatr Hematol Oncol. 2017;39(1):e33–5.

    Article  PubMed  Google Scholar 

  36. Skroza N, et al. Isotretinoin for the treatment of squamous cell carcinoma arising on an epidermoid cyst. Dermatol Ther. 2014;27(2):94–6.

    Article  PubMed  Google Scholar 

  37. Duvic M, et al. Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous T-cell lymphoma. Arch Dermatol. 2001;137(5):581–93.

    PubMed  CAS  Google Scholar 

  38. Duvic M, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19(9):2456–71.

    Article  PubMed  CAS  Google Scholar 

  39. Whittaker S, et al. Efficacy and safety of bexarotene combined with psoralen-ultraviolet A (PUVA) compared with PUVA treatment alone in stage IB-IIA mycosis fungoides: final results from the EORTC cutaneous lymphoma task force phase III randomized clinical trial (NCT00056056). Br J Dermatol. 2012;167(3):678–87.

    Article  PubMed  CAS  Google Scholar 

  40. Pullamsetti SS, et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene. 2013;32(9):1121–34.

    Article  PubMed  CAS  Google Scholar 

  41. Suhasini AN, et al. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma. Leukemia. 2016;30(3):617–26.

    Article  PubMed  CAS  Google Scholar 

  42. Kavanaugh A, et al. Longterm (52-week) results of a phase III randomized, controlled trial of apremilast in patients with psoriatic arthritis. J Rheumatol. 2015;42(3):479–88.

    Article  PubMed  CAS  Google Scholar 

  43. Reich K, et al. The efficacy and safety of apremilast, etanercept and placebo in patients with moderate-to-severe plaque psoriasis: 52-week results from a phase IIIb, randomized, placebo-controlled trial (LIBERATE). J Eur Acad Dermatol Venereol. 2017;31(3):507–17.

    Article  PubMed  CAS  Google Scholar 

  44. Song GG, Lee YH. Relative efficacy and safety of apremilast, secukinumab, and ustekinumab for the treatment of psoriatic arthritis. Z Rheumatol. 2018;77(7):613–20.

    Article  PubMed  CAS  Google Scholar 

  45. Duvic M, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Duvic M, et al. Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2009;9(6):412–6.

    Article  PubMed  Google Scholar 

  47. Olsen EA, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.

    Article  PubMed  CAS  Google Scholar 

  48. Piekarz RL, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27(32):5410–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Whittaker SJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28(29):4485–91.

    Article  PubMed  CAS  Google Scholar 

  50. Study of cancer incidence in relation to dapsone use—executive summary. [cited 2019 May 7]. http://amvif.com/government/Veterans/Dapsone/Dapsone.htm.

  51. Stern RS, Liebman EJ, Vakeva L. Oral psoralen and ultraviolet-A light (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer. PUVA follow-up study. J Natl Cancer Inst. 1998;90(17):1278–84.

    Article  PubMed  CAS  Google Scholar 

  52. Studniberg HM, Weller P. PUVA, UVB, psoriasis, and nonmelanoma skin cancer. J Am Acad Dermatol. 1993;29(6):1013–22.

    Article  PubMed  CAS  Google Scholar 

  53. Lindelof B, et al. PUVA and cancer: a large-scale epidemiological study. Lancet. 1991;338(8759):91–3.

    Article  PubMed  CAS  Google Scholar 

  54. Kimball AB, et al. OBSERVE-5: observational postmarketing safety surveillance registry of etanercept for the treatment of psoriasis final 5-year results. J Am Acad Dermatol. 2015;72(1):115–22.

    Article  PubMed  Google Scholar 

  55. Mariette X, et al. Malignancies associated with tumour necrosis factor inhibitors in registries and prospective observational studies: a systematic review and meta-analysis. Ann Rheum Dis. 2011;70(11):1895–904.

    Article  PubMed  Google Scholar 

  56. Gottlieb AB, et al. Clinical trial safety and mortality analyses in patients receiving etanercept across approved indications. J Drugs Dermatol. 2011;10(3):289–300.

    PubMed  Google Scholar 

  57. Hooper M, et al. Malignancies in children and young adults on etanercept: summary of cases from clinical trials and post marketing reports. Pediatr Rheumatol Online J. 2013;11(1):35.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Menter A, et al. Long-term safety and effectiveness of Adalimumab for moderate to severe psoriasis: results from 7-year interim analysis of the ESPRIT registry. Dermatol Ther (Heidelb). 2017;7(3):365–81.

    Article  Google Scholar 

  59. Leonardi C, et al. Comprehensive long-term safety of adalimumab from 18 clinical trials in adult patients with moderate-to-severe plaque psoriasis. Br J Dermatol. 2019;180(1):76–85.

    Article  PubMed  CAS  Google Scholar 

  60. Burmester GR, et al. Adalimumab: long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann Rheum Dis. 2013;72(4):517–24.

    Article  PubMed  CAS  Google Scholar 

  61. Lichtenstein GR, et al. A pooled analysis of infections, malignancy, and mortality in infliximab- and immunomodulator-treated adult patients with inflammatory bowel disease. Am J Gastroenterol. 2012;107(7):1051–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Torii H, et al. Safety profiles and efficacy of infliximab therapy in Japanese patients with plaque psoriasis with or without psoriatic arthritis, pustular psoriasis or psoriatic erythroderma: results from the prospective post-marketing surveillance. J Dermatol. 2016;43(7):767–78.

    Article  PubMed  CAS  Google Scholar 

  63. Mackey AC, et al. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;44(2):265–7.

    Article  PubMed  Google Scholar 

  64. Bongartz T, et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 2006;295(19):2275–85.

    Article  PubMed  CAS  Google Scholar 

  65. Solomon DH, Mercer E, Kavanaugh A. Observational studies on the risk of cancer associated with tumor necrosis factor inhibitors in rheumatoid arthritis: a review of their methodologies and results. Arthritis Rheum. 2012;64(1):21–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Geller S, et al. Malignancy risk and recurrence with psoriasis and its treatments: a concise update. Am J Clin Dermatol. 2018;19(3):363–75.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Dommasch ED, et al. The risk of infection and malignancy with tumor necrosis factor antagonists in adults with psoriatic disease: a systematic review and meta-analysis of randomized controlled trials. J Am Acad Dermatol. 2011;64(6):1035–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Asgari MM, et al. Malignancy rates in a large cohort of patients with systemically treated psoriasis in a managed care population. J Am Acad Dermatol. 2017;76(4):632–8.

    Article  PubMed  Google Scholar 

  69. deShazo R, Soltani-Arabshahi R, Krishnasamy S, et al. The effect of biologic therapy on non-melanoma skin cancer incidence among patients in the Psoriasis Longitudinal Assessment and Registry (PSOLAR). Eur Acad Dermatol Venerol. 2017.

    Google Scholar 

  70. van Lumig PP, et al. An increased risk of non-melanoma skin cancer during TNF-inhibitor treatment in psoriasis patients compared to rheumatoid arthritis patients probably relates to disease-related factors. J Eur Acad Dermatol Venereol. 2015;29(4):752–60.

    Article  PubMed  CAS  Google Scholar 

  71. Papp KA, et al. Long-term safety of ustekinumab in patients with moderate-to-severe psoriasis: final results from 5 years of follow-up. Br J Dermatol. 2013;168(4):844–54.

    Article  PubMed  CAS  Google Scholar 

  72. Papp K, et al. Safety surveillance for ustekinumab and other psoriasis treatments from the psoriasis longitudinal assessment and registry (PSOLAR). J Drugs Dermatol. 2015;14(7):706–14.

    PubMed  CAS  Google Scholar 

  73. van de Kerkhof PC, et al. Secukinumab long-term safety experience: a pooled analysis of 10 phase II and III clinical studies in patients with moderate to severe plaque psoriasis. J Am Acad Dermatol. 2016;75(1):83–98. e4

    Article  PubMed  CAS  Google Scholar 

  74. Strober B, et al. Short- and long-term safety outcomes with ixekizumab from 7 clinical trials in psoriasis: etanercept comparisons and integrated data. J Am Acad Dermatol. 2017;76:432–440.e17. https://doi.org/10.1016/j.jaad.2016.09.026.

    Article  PubMed  CAS  Google Scholar 

  75. Attia A, et al. Safety and efficacy of brodalumab for moderate-to-severe plaque psoriasis: a systematic review and meta-analysis. Clin Drug Investig. 2017;37(5):439–51.

    Article  PubMed  CAS  Google Scholar 

  76. Reich K, et al. Efficacy and safety of guselkumab, an anti-interleukin-23 monoclonal antibody, compared with adalimumab for the treatment of patients with moderate to severe psoriasis with randomized withdrawal and retreatment: results from the phase III, double-blind, placebo- and active comparator-controlled VOYAGE 2 trial. J Am Acad Dermatol. 2017;76(3):418–31.

    Article  PubMed  CAS  Google Scholar 

  77. Amin M, et al. Review of phase III trial data on IL-23 inhibitors tildrakizumab and guselkumab for psoriasis. J Eur Acad Dermatol Venereol. 2017;31(10):1627–32.

    Article  PubMed  CAS  Google Scholar 

  78. Reich K, et al. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet. 2017;390(10091):276–88.

    Article  PubMed  CAS  Google Scholar 

  79. Papp KA, et al. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376(16):1551–60.

    Article  PubMed  CAS  Google Scholar 

  80. Blauvelt A, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet. 2017;389(10086):2287–303.

    Article  PubMed  CAS  Google Scholar 

  81. Simpson EL, Akinlade B, Ardeleanu M. Two phase 3 trials of Dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2017;376(11):1090–1.

    Article  PubMed  Google Scholar 

  82. Winthrop KL, et al. Long-term safety of rituximab in rheumatoid arthritis: analysis from the SUNSTONE registry. Arthritis Care Res (Hoboken). 2018;71(8):993–1003.

    Article  CAS  Google Scholar 

  83. Fleury I, et al. Rituximab and risk of second primary malignancies in patients with non-Hodgkin lymphoma: a systematic review and meta-analysis. Ann Oncol. 2016;27(3):390–7.

    Article  PubMed  CAS  Google Scholar 

  84. van Vollenhoven RF, et al. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol. 2015;42(10):1761–6.

    Article  PubMed  CAS  Google Scholar 

  85. Cheungpasitporn W, et al. The effectiveness and safety of rituximab as induction therapy in ABO-compatible non-sensitized renal transplantation: a systematic review and meta-analysis of randomized controlled trials. Ren Fail. 2015;37(9):1522–6.

    Article  PubMed  CAS  Google Scholar 

  86. Peuvrel L, et al. Melanoma and rituximab: an incidental association? Dermatology. 2013;226(3):274–8.

    Article  PubMed  CAS  Google Scholar 

  87. Uzun S, et al. Efficacy and safety of rituximab therapy in patients with pemphigus vulgaris: first report from Turkey. Int J Dermatol. 2016;55(12):1362–8.

    Article  PubMed  CAS  Google Scholar 

  88. Gupta J, et al. Low-dose rituximab as an adjuvant therapy in pemphigus. Indian J Dermatol Venereol Leprol. 2017;83(3):317–25.

    Article  PubMed  Google Scholar 

  89. Kasper S. Editorial. Int J Psychiatry Clin Pract. 2009;13(4):243–4.

    Article  PubMed  Google Scholar 

  90. Joly P, et al. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet. 2017;389(10083):2031–40.

    Article  PubMed  CAS  Google Scholar 

  91. Wang HH, et al. Efficacy of rituximab for pemphigus: a systematic review and meta-analysis of different regimens. Acta Derm Venereol. 2015;95(8):928–32.

    Article  PubMed  CAS  Google Scholar 

  92. Allen KJ, Wolverton SE. The efficacy and safety of rituximab in refractory pemphigus: a review of case reports. J Drugs Dermatol. 2007;6(9):883–9.

    PubMed  Google Scholar 

  93. Corren J, et al. Safety and tolerability of omalizumab. Clin Exp Allergy. 2009;39(6):788–97.

    Article  PubMed  CAS  Google Scholar 

  94. Belliveau PP. Omalizumab: a monoclonal anti-IgE antibody. MedGenMed. 2005;7(1):27.

    PubMed  PubMed Central  Google Scholar 

  95. Long A, et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol. 2014;134(3):560–7. e4

    Article  PubMed  CAS  Google Scholar 

  96. Saini SS, et al. Efficacy and safety of omalizumab in patients with chronic idiopathic/spontaneous urticaria who remain symptomatic on H1 antihistamines: a randomized, placebo-controlled study. J Invest Dermatol. 2015;135(3):925.

    Article  PubMed  CAS  Google Scholar 

  97. Dhar S. Intravenous immunoglobulin in dermatology. Indian J Dermatol. 2009;54(1):77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sapir T, Shoenfeld Y. Uncovering the hidden potential of intravenous immunoglobulin as an anticancer therapy. Clin Rev Allergy Immunol. 2005;29(3):307–10.

    Article  PubMed  CAS  Google Scholar 

  99. Chapman JR, Webster AC, Wong G. Cancer in the transplant recipient. Cold Spring Harb Perspect Med. 2013;3(7):a015677.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Engels EA, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Acuna SA, et al. Cancer screening recommendations for solid organ transplant recipients: a systematic review of clinical practice guidelines. Am J Transplant. 2017;17(1):103–14.

    Article  PubMed  CAS  Google Scholar 

  102. Hernandez-Ramirez RU, et al. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. Lancet HIV. 2017;4(11):e495–504.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shiels MS, et al. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr. 2009;52(5):611–22.

    Article  PubMed  PubMed Central  Google Scholar 

  104. WHO. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. 2015.

    Google Scholar 

  105. Goncalves PH, et al. Cancer prevention in HIV-infected populations. Semin Oncol. 2016;43(1):173–88.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, K.K., Armstrong, A.W. (2021). Malignancy Risks of Dermatologic Therapies. In: Liu, V. (eds) Dermato-Oncology Study Guide. Springer, Cham. https://doi.org/10.1007/978-3-030-53437-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53437-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53436-3

  • Online ISBN: 978-3-030-53437-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics