Skip to main content

Selected Reaction Monitoring Mass Spectrometry

  • Chapter
  • First Online:
Selected Reaction Monitoring Mass Spectrometry (SRM-MS) in Proteomics

Abstract

Proteomics is the large-scale study of the entire complement of proteins in a cell, tissue, biofluid, or organism. Mass spectrometry-based proteomics can be done by top-down, middle-down, or bottom-up approach. Proteomics workflow is also divided into shotgun/discovery and targeted proteomics. SRM-MS or MRM-MS is one of most prominent targeted proteomics techniques initially developed for small molecules but now used largely for proteomics. The method utilizes triple quadrupole (QqQ) instrument, where Q1 and Q3 are set for a specified precursor m/z and its specific fragment ion after it fragments in the q2 collision cell. Several such transitions (precursor > product ion pairs) can be monitored over the chromatographic elusion time. Researchers nowadays also use SRM assays with some modifications of the conventional one. Other targeted proteomics methods include pseudoSRM, PRM, and targeted DIA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addona TA, Abbaatiello SE, Schilling B, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol. 2009;27:633–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.

    CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    CAS  PubMed  Google Scholar 

  • Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev. 2012;41:3912–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Claassen M, Aebersold R. Comprehensive proteomics. Current Opin Biotechnol. 2011;22:3–8.

    CAS  Google Scholar 

  • Bordeaux J, Welsh A, Agarwal S, Killiam E, Baquero M, Hanna J, Anagnostou V, Rimm D. Antibody validation. BioTechniques. 2010;48:197–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borras E, Sabido E. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry. Proteomics. 2017;17(1–8):1700180.

    Google Scholar 

  • Bourmaud A, Gallien S, Domon B. Parallel reaction monitoring using quadrupole-orbitrap mass spectrometer: Principle and applications. Proteomics. 2016;16:2146–59.

    CAS  PubMed  Google Scholar 

  • Cannon J, Lohnes K, Wynne C, Wang Y, Edwards N, Fenselau C. High-throughput middle-down analysis using an orbitrap. J Proteomics Res. 2010;9:3886–90.

    CAS  Google Scholar 

  • Catherman AD, Skinner OS, Kelleher NL. Top down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445:683–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceglarek U, Wielsch N, Dojahn J et al. Comparing multiple strategies for targeted protein quantitation in human serum. 58th ASMS Conference on Mass Spectrometry and Allied Topics, Salt Lake City, UT, USA, 23–27 May 2010.

    Google Scholar 

  • Colangelo CM, Chung L, Bruce C, Cheung KH. Review of software tools for design and analysis of large-scale MRM proteomic datasets. Methods. 2013;61:287–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong W, John CT, Leonid Z, Kenneth RD, Mingxi L, Dorothy RA, Bryan PE, Paul MT, Jonathan VS, Neil LK. A protease for ‘middle-down’ proteomics. Nat Methods. 2012;9:822–4.

    Google Scholar 

  • Corr JJ, Kovarik P, Schneider BB, Hendrikse J, Loboda A, Covey TR. Design considerations for high speed quantitative mass spectrometry with MALDI ionization. J Am Soc Mass Spectrom. 2006;17:1129–41.

    CAS  PubMed  Google Scholar 

  • Cristobal A, Marino F, Post H, van den Toorn HWP, Mohammed S, Heck AJR. Towards an optimized workflow for middle-down proteomics. Anal Chem. 2017;89:3318–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delahunty CM, Yates JR III. MudPIT: multidimensional protein identification technology. BioTechniques. 2007;43:563–9.

    CAS  PubMed  Google Scholar 

  • Domon B, Gallien S. Recent advances in targeted proteomics for clinical applications. Proteomics Clin Appl. 2015;9:423–31.

    CAS  PubMed  Google Scholar 

  • Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, Canterbury JD, Marsh DM, Kellmann M, Zabrouskov V, Wu CC, MacCoss MJ. Multiplexed MS/MS for improved data-dependent acquisition. Nat Methods. 2013;10:744–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enjalbert Q, Simon R, Salvador A, Antoine R, Redon S, Ayhan MM, darbour F, Chambert S, Bretonniere Y, Dugourd P, Lemoine J. Photo-SRM: laser-induced dissociation improves detection selectivity of selected reaction monitoring mode. Rapid Commun Mass Spectrom. 2011;25:3375–81.

    CAS  PubMed  Google Scholar 

  • Enjalbert Q, Girod M, Simon R, Jeudy J, Chirot F, Salvador A, Antoine R, Dugourd P, Lemoine J. Improved detection specificity for plasma proteins by targeting cysteine-containing peptides with photo-SRM. Anal Bioanal Chem. 2013;405:2321–31.

    CAS  PubMed  Google Scholar 

  • Enjalbert Q, Giron M, Jeudy J, Biarc J, Simon R, Antoine R, Dugourd P, Lemoine J, Salvador A. Combined collision-induced dissociation and photo-selected reaction monitoring mass spectrometry modes for simultaneous analysis of coagulation factors and estrogens. J Pharm Anal. 2014;4:183–9.

    CAS  PubMed  Google Scholar 

  • Fortin T, Salvador A, Charrier JP, Lenz C, Bettsworth F, Lacoux X, Choquet-Kastylevsky G, Lemoine J. Multiple reaction monitoring cubed for protein quantification at the low nanogram/milliliter level in nanodroplet human serum. Anal Chem. 2009;81:9343–52.

    CAS  PubMed  Google Scholar 

  • Gallien S, Domon B. Detection and quantification of proteins in clinical samples using high resolution mass spectrometry. Methods. 2015;81:15–23.

    CAS  PubMed  Google Scholar 

  • Gallien S, Duriez E, Domon B. Selected reaction monitoring applied to proteomics. J Mass Spectrom. 2011;46:298–312.

    CAS  PubMed  Google Scholar 

  • Gillet LC, Navarro P, Tate S, Rost H, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:1–17. https://doi.org/10.1074/mcp.O111.016717.

    Article  CAS  Google Scholar 

  • Gobey J, cole M, Janiszewski J, Covey T, Chau T, Kovarik P, Corr J. Characterization and performance of MALDI on a triple quadrupole mass spectrometer for analysis and quantification of small molecules. Anal Chem. 2005;77:5643–54.

    CAS  PubMed  Google Scholar 

  • Graves PR, Haystead TA. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66:39–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Aslanian A, Yates JR III. Mass spectrometry for proteomics. Current Opin Chem Biol. 2008;12:483–90.

    CAS  Google Scholar 

  • Jaffe JD, Keshishian H, Chang B, Addona TA, Gillette MA, Carr SA. Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. Mol Cell Proteomics. 2008;7:1952–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B. Increased selectivity, analytical precision, and throughput in targeted proteomics. Mol Cell Proteomics. 2011;10:M110.002931.

    PubMed  Google Scholar 

  • Kochmann T, Trachsel C, Panse C, Wahlander A, et al. Targeted proteomics coming of age – SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics. 2016;16:2183–92.

    Google Scholar 

  • Krastins B, Prakash A, Sarracino DA, Nedelkov D, et al. Rapid development of sensitive, high-throughput, quantitative and highly selective mass spectrometric targeted immunoassays for clinically important proteins in human plasma and serum. Clin Biochem. 2013;46:399–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusebauch U, Hunter CL, Aebersold R, Roritz RL. Improving selectivity using MRM3 quantitation for the definitive detection of human protein kinases. 58th ASMS Conference on Mass Spectrometry and Allied Topics, Salt Lake City, UT, USA, 23–27 May 2010.

    Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold B. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 2008;4:222. https://doi.org/10.1038/msb.2008.61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemoine J, Fortin T, Salvador A, Jaffuel A, Charrier J, Choquet-Kastylevsky G. The current status of clinical proteomics and the use of MRM and MRM3 for biomarker validation. Expert Rev Mol Diagn. 2012;12:333–42.

    CAS  PubMed  Google Scholar 

  • Leney AC, Heck JR. Native mass spectrometry: What is in the name? J Am Soc Mass Spectrom. 2017;28:5–13.

    CAS  PubMed  Google Scholar 

  • Lesur A, Varesio E, Hopfgartner G. Protein quantification by MALDI-selected reaction monitoring mass spectrometry using sulfonate derivatized peptides. Anal Chem. 2010;82:5227–37.

    CAS  PubMed  Google Scholar 

  • Liebler DC. Shotgun mass spec goes independent. Nat Methods. 2004;1:16–7.

    CAS  PubMed  Google Scholar 

  • Link JL, LaBaer J. Proteomics: a cold Spring Harbor Laboratory course manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  • Liu X, Jin Z, O’Brian R, Bathon J, Dietz HC, Grote E, Van Eyk JE. Constrained selected reaction monitoring: quantification of selected post-translational modifications and protein isoforms. Methods. 2013;61:304–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livesay EA, Tang K, Taylor BK, Buschbach MA, Hopkins DF, LaMarche BL, Zhao R, Shen Y, Orton DJ, Moore RJ, Kelly RT, Udseth HR, Smith RD. Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. Anal Chem. 2008;80:294–302.

    CAS  PubMed  Google Scholar 

  • Lopez MF, Rezai T, Sarracino DA, Prakash A, Krastins B, et al. Selected reaction monitoring-mass spectrometric immunoassay responsive to parathyroid hormone and related variants. Clin Chem. 2010;56:281–90.

    CAS  PubMed  Google Scholar 

  • Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC. Aebersold. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol. 2018;14:e8126.

    PubMed  PubMed Central  Google Scholar 

  • MacLean B, Tomazela DM, Abbatiello SE, Zhang SC, Whiteaker JR, Paulovich AG, Carr SA, MacCoss MJ. Effect of collision energy optimization on the measurement of peptides by selected reaction monitoring (SRM) mass spectrometry. Anal Chem. 2010;82:10116–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010;28:695–709.

    CAS  PubMed  Google Scholar 

  • Marcotte EM. How do shotgun proteomics algorithms identify proteins? Nat Biotechnol. 2007;25:755–7.

    CAS  PubMed  Google Scholar 

  • Marx V. Targeted proteomics. Nat Methods. 2013;10:19–22.

    CAS  PubMed  Google Scholar 

  • McLafferty FW, Breuker K, Jin M, Han X, Infusini G, Jiang H, Kong X, Begley TP. Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J. 2007;274:6256–68.

    CAS  PubMed  Google Scholar 

  • Mollah S, Chisholm J, Mollova N, Leung K. Bramwell-German, C. Probing mass spectrometric strategies for high sensitivity quantification of clinically relevant peptides. 59th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, CO, USA, 5–9 June 2011.

    Google Scholar 

  • Moradian A, Kalli A, Sweredoski MJ, Hess S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histones variants and their post-translational modifications. Proteomics. 2014;14:489–97.

    CAS  PubMed  Google Scholar 

  • Motoyama A, Xu T, Ruse CI, Wohlschlegel JA, Yates JR III. Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal Chem. 2007;79:3623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Farrell PZ, Goodman HM, O’Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977;12:1133–41.

    PubMed  Google Scholar 

  • Pak H, Pasquarello C, Scherl A. Label-free protein quantification on tandem mass spectra in an ion trapping device. JIntegr Omics. 2011;1:211–5.

    Google Scholar 

  • Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics. 2012;11:1475–88.

    PubMed  PubMed Central  Google Scholar 

  • Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.

    Google Scholar 

  • Prakash A, Rezai T, Krastins B, Sarracino D, et al. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res. 2012;11:3986–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rauniyar N. Parallel reaction monitoring: a targeted experiment performed using high resolution and high mass accuracy mass spectrometry. Int J Mol Sci. 2015;16:28566–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savaryn JP, Toby TK, Kelleher NL. A researcher’s guide to mass spectrometry-based proteomics. Proteomics. 2016;16:2435–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Gehlenborg N, Bodenmiller B, Mueller LN, Campbell D, Mueller M, Aebersold R, Domon B. An integrated, directed mass spectrometric approach for in-depth characterization of complex peptide mixtures. Mol Cell Proteomics. 2008;7:2138–50.

    PubMed  PubMed Central  Google Scholar 

  • Schmidt A, Classen M, Aebersold R. Directed mass spectrometry: towards hypothesis-driven proteomics. Curr Opin Chem Biol. 2009;13:510–7.

    CAS  PubMed  Google Scholar 

  • Sharrod SD, Myers MV, Li M, Myers JS, et al. Label-free quantification of protein modifications by pseudo selected reaction monitoring with internal reference peptides. J Proteome Res. 2012;11:3467–79.

    Google Scholar 

  • Shi T, Su D, Liu T, Tang K, Camp DG II, Qian WJ, Smith RD. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics. 2012;12:1074–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics. 2016;16:2160–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidoli S, Garcia BA. Middle-down proteomics: a still unexploited resourse for chromatin biology. Expert Rev Proteomics. 2017;14:617–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, Domon B. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics. 2007;6:1809.

    CAS  PubMed  Google Scholar 

  • Tsiatsiani L, Heck AJR. Proteomics beyond trypsin. FEBS J. 2015;282:2612–26.

    CAS  PubMed  Google Scholar 

  • Valkevich EM, Sanchez NA, Ge Y, Strieter ER. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry. 2014;53:4979–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR III. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods. 2004;1:1–7.

    Google Scholar 

  • Vidova V, Spacil Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Analytica Chim Acta. 2017;964:7–23.

    CAS  Google Scholar 

  • Wagner M, Varesio E, Hopfgarner G. Ultra-fast quantitation of saquinavir in human plasma by matrix-assisted laser desorption/ionization and selected reaction monitoring mode detection. J Chromatogr B. 2008;872:68–76.

    CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–7.

    CAS  PubMed  Google Scholar 

  • Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol. 2011;29:625–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1995;13:19–50.

    Google Scholar 

  • Xu P, Peng J. Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Anal Chem. 2008;80:3438–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xuemei H, Aslanian A, Yates JR III. Mass spectrometry for proteomics. Current Opin Chem Biol. 2008;12:483–90.

    Google Scholar 

  • Yost RA, Enke CG. Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem. 1979;51:1251–64.

    CAS  PubMed  Google Scholar 

  • Zhang H, Cui W, Wen J, Blankenship RE, Gross ML. Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal Chem. 2011;83:5598–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Brasier AR. Applications of selected reaction monitoring (SRM)-mass spectrometry (MS) for quantitative measurement of signaling pathways. Methods. 2013;61:313–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M. (2020). Selected Reaction Monitoring Mass Spectrometry. In: Selected Reaction Monitoring Mass Spectrometry (SRM-MS) in Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-030-53433-2_3

Download citation

Publish with us

Policies and ethics