Skip to main content

The Mass Spectrometer and Its Components

  • Chapter
  • First Online:
Selected Reaction Monitoring Mass Spectrometry (SRM-MS) in Proteomics
  • 1082 Accesses

Abstract

Mass spectrometer measures mass-to-charge ratio (m/z) of gas-phase ions. It has three main components: ion source, mass analyzer, and detector. Ion source converts analyte molecule into gas-phase ions, a mass analyzer separates ionized analyte according to their m/z, and a detector records number of ions at each m/z value. The advent of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) transformed the field of proteomics. Several types of mass analyzers are used nowadays: quadrupole, ion trap, time-of-flight, and Orbitrap. Detector and vacuum system are also an integral part of the mass spectrometer. Tandem mass spectrometry (MS/MS) utilizes two stages of mass analysis to examine selectively the dissociation of specific ion(s) using various fragmentation techniques including collision-induced dissociation (CID), which is used exclusively for selected reaction monitoring-mass spectrometry (SRM-MS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–227.

    CAS  PubMed  Google Scholar 

  • Ahadi E, Konermann L. Modeling the behavior of coarse-grained polymer chains in charged water droplets: implications for the mechanism of electrospray ionization. J Phys Chem B. 2012;116:104–12.

    CAS  PubMed  Google Scholar 

  • Barlow CK, O’Hair RAJ. Gas-phase peptide fragmentation: how understanding the fundamentals provides a springboard to developing new chemistry and novel proteomic tools. J Mass Spectrom. 2008;43:1301–19.

    CAS  PubMed  Google Scholar 

  • Biemann K. Contributions of mass spectrometry to peptide and proteinstructure. Biomed Environ Mass Spectrom. 1988;16:99–111.

    CAS  PubMed  Google Scholar 

  • Bleakney W. A new method of positive ray analysis and its application to the measurement of ionization potentials in mercury vapor. Phys Rev. 1929;34:157–60.

    CAS  Google Scholar 

  • Bogdanov B, Smith RD. Proteomics by FT-ICR mass spectrometry: top down and bottom up. Mass Spectrom Rev. 2005;24:168–200.

    CAS  PubMed  Google Scholar 

  • Breci LA, Tabb DL, Yates JR III, et al. Cleavage N-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal Chem. 2003;75:1963–71.

    CAS  PubMed  Google Scholar 

  • Busch KL. High-vacuum pumps in mass spectrometers. Spectroscopy. 2001;16:14–8.

    CAS  Google Scholar 

  • Busch KL, Glish GL, McLucky SA. Mass spectrometry/mass spectrometry: techniques and applications of tandem mass spectrometry. New York: VCH; 1988.

    Google Scholar 

  • Chen XH, Turecek F. The arginine anomaly: Arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations. J Am Chem Soc. 2006;128:12520–30.

    CAS  PubMed  Google Scholar 

  • Coates M, Wilkins C. Laser desorption fourier transform mass spectra of malto-oligosaccharides. Biomed Mass Spectrom. 1985;12:424–8.

    CAS  PubMed  Google Scholar 

  • Comisarow MH, Marshall AG. Frequency sweep Fourier transform ion cyclotron resonance spectroscopy. Chem Phys Lett. 1974;25:282–3.

    CAS  Google Scholar 

  • Coon JJ, Shabanowitz J, Hunt DF, Syka JE. Electron transfer dissociation of peptide anions. J Am Soc Mass Spectrom. 2005a;16:880–2.

    CAS  PubMed  Google Scholar 

  • Coon JJ, Syka JEP, Shabanowitz J, Hunt DF. Tandem mass spectrometry for peptide and protein sequence analysis. BioTechniques. 2005b;38(4):519–23.

    CAS  PubMed  Google Scholar 

  • Cotte-Rodriguez I, Miao Z, Zhang Y, Chen H. Introduction to protein mass spectrometry, (Chapter 1). In: Chen G, editor. Characterization of protein therapeutics using mass spectrometry. New York: Springer Science+Business Media; 2013. https://doi.org/10.1007/978-1-4419-7862-2_1.

    Chapter  Google Scholar 

  • Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28:870–97.

    CAS  PubMed  Google Scholar 

  • de Hoffmann, E. tandem mass spectrometry: a primer. J Mass Spectrom. 1996;31:129–37.

    CAS  Google Scholar 

  • de Hoffmann E, Stroobant V. Mass spectrometry – principles and applications. 3rd ed. West Sussex: Wiley; 2007.

    Google Scholar 

  • de la Mora F. Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Anal Chem Acta. 2000;406:93–104.

    Google Scholar 

  • Dempster AJ. A new method of positive ray analysis. Phys Rev. 1918;11:316–25.

    CAS  Google Scholar 

  • Dole M, Mack LL, Hines RL, Mobley RC, Ferguson L, Alice MB. Molecular beams of macroions. J Chem Phys. 1968;49:2240–9.

    CAS  Google Scholar 

  • Dongre AR, Jones JL, Somogyi A, et al. In fluence of peptide composition, gas-phase basicity, and chemical modification on fragmentation efficiency: evidence for the mobile proton model. J Am Chem Soc. 1996;118:8365–74.

    CAS  Google Scholar 

  • Downard K. Mass spectrometry: a foundation course. Cambridge: The Royal Society of Chemistry; 2004.

    Google Scholar 

  • Ejsing CS, Duchoslav E, Sampaio J, Simons K, Bonner R, Thiele C, Ekroos K, Shevchenko A. Aotomated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem. 2007;78:6202–14.

    Google Scholar 

  • Fen JB. Electrospray wings for molecular elephant. Angew Chem Int Ed. 2003;42:3871–94.

    Google Scholar 

  • Fornelli L, Damoc E, Thomas PM, Kelleher NL, Aizikov K, Denisov E, Marakov A, Tsybin YO. Analaysis of antact monoclonal antibody IgG1 by electron transfer dissociation orbitrap FTMS. Mol Cell Proteomics. 2012;11:1758–67.

    PubMed  PubMed Central  Google Scholar 

  • Glish GL, Goeringer DE. Tandem quadrupole/time-of-flight instrument for mass spectrometry/mass spectrometry. Anal Chem. 1984;56:2291–5.

    CAS  Google Scholar 

  • Glish GL, Vachet RW. The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov. 2003;2:140–50.

    CAS  PubMed  Google Scholar 

  • Gross JH. Mass spectrometry – a textbook. Heidelberg: Springer; 2004.

    Google Scholar 

  • Guthals A, Bandeira N. Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol Cell Proteomics. 2012;9:550–7.

    Google Scholar 

  • Haag AM. Mass analyzers and mass spectrometers. In: Mirzaei H and Carrasco M, editors. Modern proteomics - sample preparation, analysis and practical applications. Advances in Experimental Medicine and Biology. 2016;919. https://doi.org/10.1007/978-3-319-41448-5_7.

  • Halim A, Ruetschi U, Larsen G, Nilsson J. LC-MS/MS characterization of O-glycosylation sites and glycan structures of human cerebrospinal fluid glycoproteins. J Proteome Res. 2013;12:573–84.

    CAS  PubMed  Google Scholar 

  • Hillenkamp F, Karas M, beavis RC, Chait BT. Matrix-assisted laser desorption ionization mass spectrometry of biopolymers. Anal Chem. 1991;63:A1193–202.

    Google Scholar 

  • Ho CS, Lam CWK, Chan MHM, Cheung RCK, Law LK, Lit LCW, Ng KF, Suen MWM, Tai HL. Electrospray ionization mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003;24:3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan CJ, Carroll JA, Rohrs HW, Biswas P, Gross ML. Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. J Am Chem Soc. 2008;130:6926–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain M, Limbach PA. A comparison of MALDI matrices. In: Cole RB, editor. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. 2nd ed. New York: Wiley; 2010.

    Google Scholar 

  • Hu Q, Noll RJ, Li H, Makarov A, Cooks RG. The orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40:430–43.

    CAS  PubMed  Google Scholar 

  • Hunt DF, Yates JR III, Shabanowitz J, Winston S, et al. Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci U S A. 1986;83:6233–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iribarne J, Thomson B. On the evaporation of small ions from charged droplets. J Chem Phys. 1976;64:2287–94.

    CAS  Google Scholar 

  • Jedrychowski MP, Huttlin EL, Hass W, Sowa ME, Rad R, Gygi SP. Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics. 2011;10:1–9. https://doi.org/10.1074/mcp.M111.009910.

    Article  CAS  Google Scholar 

  • Jennings KR, Dolnikowski GG. Mass analyzers. Methods Enzymol. 1990;193:37–61.

    CAS  Google Scholar 

  • Juraschek R, Dulks T, Karas M. Nanospray – more than just a minimized-flow electrospray ion source. J Am Soc Mass Spectrom. 1999;10:300–8.

    CAS  PubMed  Google Scholar 

  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60:2299–302.

    CAS  PubMed  Google Scholar 

  • Kebarle P, Verkerk UH. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev. 2009;28:898–917.

    CAS  PubMed  Google Scholar 

  • Khatri N, Ankit G, Ruchi T, Ajoy B, Prasant B. A review on mass spectrometry detectors. Int Res J Pharm. 2012;3:33–42.

    CAS  Google Scholar 

  • Kinter M, Sherman NE. Protein sequencing and identification using tandem mass spectrometry. New York: Wiley; 2000.

    Google Scholar 

  • Knochenmuss, R. MALDI ionization mechanisms: an overview. In: Cole RB, editor. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications, 2nd ed. Hoboken: Wiley; 2010.

    Google Scholar 

  • Konermann L. A minimalist model for exploring conformational effects on the electrospray charge state distribution of proteins. J Phys Chem B. 2007:6534–43.

    Google Scholar 

  • Konermann L, Rodriguez AD, Liu J. On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization. Anal Chem. 2012;84:6798–804.

    CAS  PubMed  Google Scholar 

  • Konermann L, Ahadi E, Rodriguez AD, Vahidi S. Unraveling the mechanism of electrospray ionization. Anal Chem. 2013;85:2–9.

    CAS  PubMed  Google Scholar 

  • Koppenaal DW, Barinaga CJ, Denton MB, Sperline RP, Hieftje GM, Schilling GD, Andrade FJ, Barnes JH IV. Mass spectrometry detectors – eye on ions. Anal Chem. 2007;77:418A–27A.

    Google Scholar 

  • Mamyrin BA. Laser-assisted reflectron time-of-flight mass spectrometry. Int J Mass Spectrom Ion Process. 1994;131:1–19.

    CAS  Google Scholar 

  • Marakov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem. 2000;72:1156–62.

    Google Scholar 

  • Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev. 1998;17:1–35.

    CAS  PubMed  Google Scholar 

  • McAlister GC, Russell JD, Rumachik NG, Hebert AS, Syka JE, Geer LY, Westphall MS, Pagliarini DJ, Coon JJ. Analysis of the acidic proteome with negative electron-transfer dissociation mass spectrometry. Anal Chem. 2012;84:2875–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McLafferty FW. Tandem mass spectrometry. New York: Wiley; 1983.

    Google Scholar 

  • Medhe S. Mass spectrometry: detectors review. Chem Biomol Eng. 2018;3:51–8.

    Google Scholar 

  • Mikesh LM, Ueberheide B, Chi A, et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta. 2006;1764:1811–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munson B. Chemical ionization mass spectrometry: theory and applications. In: Encyclopedia of analytical chemistry: applications, theory and instrumentation. New York: Wiley; 2006.

    Google Scholar 

  • Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc. 1966;88:2621–30.

    CAS  Google Scholar 

  • Nguyen S, Fen JB. Gas-phase ions of solute species from charged droplets of solutions. PNAS. 2007;104:1111–7.

    CAS  PubMed  Google Scholar 

  • O’Connor PB. The development of matrix-assisted laser desorption/ionization sources. In: Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. 2nd ed. Hoboken: Wiley; 2010.

    Google Scholar 

  • O’Connor PB, Cournoyer JJ, Pitteri SJ, et al. Differentiation of aspartic and isoaspartic acids using electron transfer dissociation. J Am Soc Mass Spectrom. 2006;17:15–9.

    PubMed  Google Scholar 

  • Olsen JV, Macek B, Lange O, Marakov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods. 2007;4:709–12.

    CAS  PubMed  Google Scholar 

  • Paizs B, Suhal S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev. 2005;24:508–48.

    CAS  PubMed  Google Scholar 

  • Papayannopoulos IA. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass Spectrom Rev. 1995;14:49–73.

    CAS  Google Scholar 

  • Paul W, Steinwedel H. A new mass spectrometer without magnetic field. Z Naturforsch. 1953;8A:448–50.

    CAS  Google Scholar 

  • Paul W, Steinwedel HS. US Patent 2939952, 1960.

    Google Scholar 

  • Riley NM, Coon JJ. The role of electron transfer dissociation in modern proteomics. Anal Chem. 2018;90:40–64.

    CAS  PubMed  Google Scholar 

  • Sarbu M, Ghiulai RM, Zamfir AD. Recent developments and applications of electron transfer dissociation mass spectrometry in proteomics. Amino Acids. 2014;46:1625–34.

    CAS  PubMed  Google Scholar 

  • Scheltema RA, Hauschild J-P, Lange O, Hornburg D, Denisov E, Damoc E, Kuehn A, Marakov A, Mann M. The Q Exactive HF, a benchtop mass spectrometer with a pre-filter, high-performance quadrupole and an ultra-high-field Orbitrap analyzer. Mol Cell Proteomics. 2014;13(12):3698–708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherl A. Clinical protein mass spectrometry. Methods. 2015;81:3–14.

    CAS  PubMed  Google Scholar 

  • Schmidt A, Karas M, Dulks T. Effect of different solution flow rates on analyte signals in nano-ESI-MS, or when does ESI turn into nano-ESI. J Am Soc Mass Spectrom. 2003;14:492–500.

    CAS  PubMed  Google Scholar 

  • Schurenberg M, Dreisewerd K, Hillenkamp F. Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrices. Anal Chem. 1999;71:221–9.

    CAS  PubMed  Google Scholar 

  • Scigelova M, Hornshaw M, Giannakopulos A, Makarov A. Fourier transform mass spectrometry. Mol Cell Proteomics. 2011;10:M111.009431. https://doi.org/10.1074/mcpM111.009431.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibdas B, Mazumdar S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem. 2012; Article ID 282574, 40 pages.

    Google Scholar 

  • Shukla AK, Futrell JH. Tandem mass spectrometry: dissociation of ions by collisional activation. J Mass Spectrom. 2000;35:1069–90.

    CAS  PubMed  Google Scholar 

  • Siuzdak G. Mass spectrometry for biotechnology. San Diego: Academic; 1996.

    Google Scholar 

  • Stafford GC, Kelley PE, Syka JEP, Reynolds WE, Todd JFJ. Recent improvements in analytical applications of advanced ion trap technology. Int J Mass Spectrom Ion Process. 1984;60:85–98.

    CAS  Google Scholar 

  • Stephens WE. A pulsed mass spectrometer with time dispersion. Phys Rev. 1946;69:691.

    CAS  Google Scholar 

  • Summerfield SG, Whiting A, Gaskell SJ. Intra-ionic interactions in electrosprayed peptide ions. Int J Mass Spectrom Ion Process. 1997;162:149–61.

    CAS  Google Scholar 

  • Swaney DL, McAlister GC, Wirtala, et al. Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. Anal Chem. 2006;79:477–85.

    Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci. 2004;101:9528–33.

    CAS  PubMed  Google Scholar 

  • Syrstad EA, Turecek F. Toward a general mechanism of electron capture dissociation. J Am Soc Mass Spectrum. 2005;16:208–24.

    CAS  Google Scholar 

  • Tanaka K. The origin of macromolecule ionization by laser irradiation (noble lecture). Angew Chem Int Ed. 2003;42:3861–70.

    CAS  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2:151–3.

    CAS  Google Scholar 

  • Tang L, Kebarle P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal Chem. 1993;65:3654–68.

    CAS  Google Scholar 

  • Thomson B, Iribarne J. Field induced ion evaporation from liquid surfaces at atmospheric pressure. J Phys Chem. 1979;71:4451–63.

    CAS  Google Scholar 

  • Tsybin YO, Kakansson P, Budnik BA, Haselmann KF, Kjeldsen F, Gorshkov M, Zubarev RA. Improved low-energy injection systems for high rate electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom. 2001;15:1849–54.

    CAS  PubMed  Google Scholar 

  • Van Berkel GJ, Kertesz V. Anal Chem. 2007;79:5510–20.

    PubMed  Google Scholar 

  • Vasicek L, Broadbelt JS. Enhanced electron transfer dissociation through fixed charge derivatization of cysteines. Anal Chem. 2009;81:7876–84.

    CAS  PubMed  Google Scholar 

  • Vastola F, Mumma R, Pirone A. Analysis of organic salts by laser ionization. Org Mass Spectrom. 1970;3:101–4.

    CAS  Google Scholar 

  • Wells JM, McLucky SA. Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 2005;402:148–85.

    CAS  PubMed  Google Scholar 

  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB. Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem. 1985;57:675–9.

    CAS  PubMed  Google Scholar 

  • Wiesner J, Premsler T, Sickmann A. Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics. 2008;8:4466–83.

    CAS  PubMed  Google Scholar 

  • Wiley WC, Mclaren IH. Time-of-flight mass spectrometer with improved resolution. Rev Sci Instrum. 1955;26:1150–7.

    CAS  Google Scholar 

  • Wilm M. Principles of electrospray ionization. Mol Cell Proteomics. 2011;10(7):M111.009407. https://doi.org/10.1074/mcp.M111.009407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilm M, Mann M. Analytical properties of the nanospray ion source. Anal Chem. 1996;68:1–8.

    CAS  PubMed  Google Scholar 

  • Winger BE, Light-Wahl KJ, Ogorzalek Loo RR, Udseth HR, Smith RD. Observation and implications of high mass-to-charge ratio ions from electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 1993;4:536–45.

    CAS  PubMed  Google Scholar 

  • Wysocki VH, Tsaprailis G, Smith LL, et al. Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom. 2000;35:1399–406.

    CAS  PubMed  Google Scholar 

  • Wysocki VH, Resing KA, Zhang Q, et al. Mass spectrometry of peptides and proteins. Methods. 2005;35:211–22.

    CAS  PubMed  Google Scholar 

  • Yamashita M, Fenn JB. Electrospray ion source. Another variation on the free-jet theme. J Phys Chem. 1984;88:4451–9.

    CAS  Google Scholar 

  • Yost RA, Enke CG. Selected ion fragmentation with a tandem quadrupole mass spectrometer. J Am Chem Soc. 1978;100:2274–5.

    CAS  Google Scholar 

  • Zubarev RA. Electron-capture dissociation tandem mass spectrometry. Curr Opin Biotechnol. 2004;15:12–6.

    CAS  PubMed  Google Scholar 

  • Zubarev RA, Marakov AA. Orbitrap mass spectrometry. Anal Chem. 2013;85:5288–96.

    CAS  PubMed  Google Scholar 

  • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A non-ergodic process. J Am Chem Soc. 1998;120:3265–6.

    CAS  Google Scholar 

  • Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem. 2000;72:563–73.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M. (2020). The Mass Spectrometer and Its Components. In: Selected Reaction Monitoring Mass Spectrometry (SRM-MS) in Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-030-53433-2_2

Download citation

Publish with us

Policies and ethics