Skip to main content

Nutrition in Critical Illness

  • Chapter
  • First Online:
Pediatric Critical Care
  • 2807 Accesses

Abstract

Nutrition is fundamental to health, and therefore, the provision of adequate nutrition to hospitalized patients should be a priority for health-care providers. For children in the intensive care setting, this can be difficult given their multitude of medical needs. This chapter aims to provide an overview of the basic tenets of nutritional care of the PICU patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Angurana S, et al. Evaluation of effect of probiotics on cytokine levels in critically ill children with severe sepsis: a double-blind, placebo controlled trial. Crit Care Med. 2018;46(10):1656–64.

    CAS  PubMed  Google Scholar 

  • Agus MS, Wypij D, Hirshberg EL, et al. HALF-PINT study investigators and the PALISI network. Tight glycemic control in critically ill children. N Engl J Med. 2017;376:729–41.

    PubMed  PubMed Central  Google Scholar 

  • Baudouin SV, Evans TW. Nutrition support in critical care. Clin Chest Med. 2003;24(4):633–44.

    PubMed  Google Scholar 

  • Bechard LJ, et al. Nutritional status based on body mass index is associated with morbidity and mortality in mechanically ventilated critically ill children in the PICU. Crit Care Med. 2016;44:1530–7.

    PubMed  PubMed Central  Google Scholar 

  • Berger MM, Chioléro RL. Key vitamins and trace elements in the critically ill. In: Nestlé nutrition workshop series clinical & performance program, vol. 8. Basel: Nestec Ltd.; Vevey/S. Karger AG; 2003. p. 99–117.

    Google Scholar 

  • Botrán M, López-Herce J, Mencía S, et al. Enteral nutrition in the critically ill child: comparison of standard and protein-enriched diets. J Ped. 2011;159:e27–32.

    Google Scholar 

  • Briassoulis G, Venkataraman ST, Thompson AE. Energy expenditure in critically ill children. Crit Care Med. 2000;28(4):1166–72.

    CAS  PubMed  Google Scholar 

  • Briassoulis GC, Zavras NJ, Hatzis TD. Effectiveness and safety of a protocol for promotion of early intragastric feeding in critically ill children. Pediatr Crit Care Med. 2001a;2(2):113–21.

    CAS  PubMed  Google Scholar 

  • Briassoulis GC, Zavras NJ, Hatzis TD. Malnutrition, nutritional indices and early enteral feeding in critically ill children. Nutrition. 2001b;17:548–57.

    CAS  PubMed  Google Scholar 

  • Briassoulis G, et al. Early enteral administration of immunonutrition in critically ill children: result of a blinded randomized controlled clinical trial. Nutrition. 2005;21(7–8):799–807.

    PubMed  Google Scholar 

  • Briassoulis G, et al. Temporal nutritional and inflammatory changes in children with severe head injury fed a regular or immune-enhancing diet: a randomized, controlled trial. Pediatr Crit Care Med. 2006;7(1):56–62.

    PubMed  Google Scholar 

  • Brown A, et al. Enteral nutrition in the PICU: current status and ongoing challenges. J Pediatr Intensive Care. 2015;4:111–20.

    PubMed  PubMed Central  Google Scholar 

  • Canarie MF, et al. Risk factors for delayed enteral nutrition in critically ill children. Pediatr Crit Care Med. 2015;16(8):e283–9.

    PubMed  PubMed Central  Google Scholar 

  • Cogo PE, Carnielli VP, Rosso F, Cesarone A, Giordano G, Faggian D, Plebani M, Barreca A, Zacchello F. Protein turnover, lipolysis, and endogenous hormonal secretion in critically ill children. Crit Care Med. 2002;30(1):65–70.

    CAS  PubMed  Google Scholar 

  • Coss-Bu GA, Jefferson LS, Walding D, David Y, Smith O, Klish WJ. Resting energy expenditure and nitrogen balance in critically ill pediatric patients on mechanical ventilation. Nutrition. 1998;14:649–52.

    CAS  PubMed  Google Scholar 

  • De Lucas C, Moreno M, Lopez-Herce J, et al. Transpyloric enteral nutrition reduces the complication rate and cost in the critically ill child. JPGN. 2000;30:175–80.

    PubMed  Google Scholar 

  • De Souza Menezes F, et al. Malnutrition as an independent predictor of clinical outcome in critically ill children. Nutrition. 2012;28:267–70.

    PubMed  Google Scholar 

  • Delgado AF, et al. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics (Sao Paulo). 2008;63:357–62.

    PubMed  Google Scholar 

  • Dokken M, et al. Indirect calorimetry reveals that better monitoring of nutrition therapy in pediatric intensive care is needed. JPEN. 2015;39:344–52.

    Google Scholar 

  • Fivez T, et al. Early versus late parenteral nutrition in critically ill children. NEJM. 2016;374(12):1111–22.

    CAS  PubMed  Google Scholar 

  • Flancbaum L, Choban PS, Sambucco S, Verducci J, Burge JC. Comparison of indirect calorimetry, the Fick method, and prediction equations in estimating the energy requirements of crucially ill patients. Am J Clin Nutr. 1999;69:461–6.

    CAS  PubMed  Google Scholar 

  • Grippe RB, et al. Nutritional status as a predictor of duration of mechanical ventilation in critically ill children. Nutrition. 2017;33:91–5.

    Google Scholar 

  • Goh VL, et al. Obesity is not associated with increased mortality and morbidity in critically ill children. JPEN. 2013;37(1):102–8.

    Google Scholar 

  • Harris JA, Benedict FG. A biometric study of basal metabolism in man. Boston: Carnegie Institute of Washington; 1919.

    Google Scholar 

  • Heyland DK. Parenteral nutrition in the critically-ill patient: more harm than good? Proc Nutr Soc. 2000;59:457–66.

    CAS  PubMed  Google Scholar 

  • Hirshberg EL, et al. Clinical equipoise regarding glycemic control: a survey of pediatric intensivist perceptions. Pediatr Crit Care Med. 2013;14(2):123–9.

    PubMed  Google Scholar 

  • Hojsak I, et al. Guidance on the use of probiotics in clinical practice in children with selected clinical conditions and in specific vulnerable groups. Acta Pediatr. 2018;107(6):927–37.

    Google Scholar 

  • Hulst J, Joosten K, Zimmermann L, Hop W, van Buuren S, Buller H, Tibboel D, van Goudoever J. Malnutrition in critically ill children: from admission to 6 months after discharge. Clin Nutr. 2004;23(2):223–32.

    PubMed  Google Scholar 

  • Iyer PU. Nutritional support in the critically ill child. Indian J Pediatr. 2002;69:405–10.

    PubMed  Google Scholar 

  • Iyer R, Bansal A. What do we know about optimal nutrition strategies in children with pediatric acute respiratory distress syndrome? Ann Transl Med. 2019;7(19):510–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs A, et al. Early supplemental parenteral nutrition in critically ill children: an update. J Clin Med. 2019;8:830.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joffe A, et al. Nutrition support for critically ill children (review). Cochrane Database. 2018;5, article CD005144.

    Google Scholar 

  • Kerklaan D, et al. Validation of ventilator-derived VCO2 measurements to determine energy expenditure in ventilated critically ill children. Clin Nutr. 2017;36:452–7.

    PubMed  Google Scholar 

  • Leong AY, et al. A Canadian survey of perceived barriers to initiation and continuation of entral feeding in PICUs. Pediatr Crit Care Med. 2014;15(2):e49–55.

    PubMed  Google Scholar 

  • Lovat R, Presier J-C. Antioxidant therapy in intensive care. Curr Opin Crit Care. 2003;9:266–70.

    PubMed  Google Scholar 

  • Madden K, et al. Vitamin D deficiency in critically ill children. Pediatrics. 2012;130(3):421–8.

    PubMed  PubMed Central  Google Scholar 

  • Manzoli TF, et al. Lymphocyte count as a sign of immunoparalysis and its correlation with nutritional status in pediatric intensive care patients with sepsis: a pilot study. Clinics (Sao Paulo). 2016;71(11):644–9.

    PubMed  Google Scholar 

  • Martinez EE, et al. Challenges to nutrition therapy in the pediatric critically ill obese patient. Nutr Clin Pract. 2015;30(3):432–9.

    PubMed  Google Scholar 

  • Martinez EE, Mehta NM. The science and art of pediatric critical care nutrition. Curr Opin Crit Care. 2016;22:316–24.

    PubMed  Google Scholar 

  • Martinez EE, et al. Energy and protein delivery in overweight and obese children in the pediatric intensive care unit. Nutr Clin Pract. 2017;32(3):414–9.

    PubMed  Google Scholar 

  • McClave SA. Mitochondrial dysfunction in critical illness: implications for nutrition therapy. Curr Nutr Rep. 2019;8(4):363–73.

    PubMed  Google Scholar 

  • McNally JD, et al. Vitamin D deficiency in critically ill children: a systematic review and meta-analysis. Crit Care. 2017;21(1):287.

    PubMed  PubMed Central  Google Scholar 

  • Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation. Chest. 2004;126:872–8.

    PubMed  Google Scholar 

  • Mehta NM, Duggan CP. Nutritional deficiencies during critical illness. Pediatr Clin N Am. 2009;56:1143–60.

    Google Scholar 

  • Mehta NM, et al. Energy imbalance and the risk of overfeeding in critically ill children. Pediatr Crit Care Med. 2011;12(4):398–405.

    PubMed  PubMed Central  Google Scholar 

  • Mehta NM, et al. Accuracy of a simplified equation for energy expenditure based on bedside volumetric carbon dioxide elimination measurement—a two center study. Clin Nutr. 2015;34:151–5.

    PubMed  Google Scholar 

  • Mehta NM, et al. Guidelines for provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med. 2017;18:675–715.

    PubMed  Google Scholar 

  • NICE SUGAR Study investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.

    Google Scholar 

  • Nylen ES, Muller B. Endocrine changes in critical illness; J. Intensive Care Med. 2004;19:67–82.

    Google Scholar 

  • Panchel AK, et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN. 2014;40(2):236–41.

    Google Scholar 

  • Parekh D, et al. Vitamin D deficiency and acute lung injury. Inflamm Allery Drug Targets. 2013;12:253–61.

    CAS  Google Scholar 

  • Pearce CB, Duncan HD. Enteral feeding nasogastric, nasojejunal, percuatineous endocscopi gastrosom, or jejnostome;its indications and limitations. Postgrad Med J. 2002;78:198–2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollack MM, Wiley JS, Kanter R, Holbrook PR. Malnutrition in critically ill infants and children. JPEN J Parenter Enteral Nutr. 1982;6(1):20–4.

    CAS  PubMed  Google Scholar 

  • Pollack MM, Ruttimann UE, Wiley JS. Nutritional depletions in critically ill children: associations with physiologic instability and increased quantity of care. JPEN J Parenter Enteral Nutr. 1985;9(3):309–13.

    CAS  PubMed  Google Scholar 

  • Prelack K, Sheridan RL. Micronutrient supplementation in the critically ill patient: strategies for clinical practice. J Trauma. 2001;51(3):601–20.

    CAS  PubMed  Google Scholar 

  • Rokyta R Jr, Matejovic M, Krouzecky A, Senft V, Trefil L, Novak I. Post-pyloric enteral nutrition in septic patients: effects on hepato-splanchnic hemodynamics and energy status. Intensive Care Med. 2004;30(4):714–7. Epub 2004 Feb 06

    PubMed  Google Scholar 

  • Ross PA, et al. Obesity and mortality risk in critically ill children. Pediatrics. 2016;137(3):e20152035.

    PubMed  Google Scholar 

  • Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;(suppl 1):5–41.

    Google Scholar 

  • Sion-Sarid R, Cohen J, Houri Z, et al. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child. Nutrition. 2013;29:1094–9.

    PubMed  Google Scholar 

  • Skillman HE. Monitoring the efficacy of a PICU nutrition therapy protocol. JPEN. 2011;35(4):445–6.

    Google Scholar 

  • Subcommittee on the Tenth Edition of the Recommended Dietary Allowances. In: 10th ed, editor. Recommended Dietary Allowances: National Academies Press; 1999.

    Google Scholar 

  • Taylor BE, McClave SA, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit Care Med. 2016;44:390–438.

    PubMed  Google Scholar 

  • Thompson KL, et al. Nutrition interventions to optimize pediatric wound healing: an evidence-based clinical pathway. Nutr Clin Pract. 2014;29(4):473–82.

    PubMed  Google Scholar 

  • Valla FV, et al. Faltering growth in the critically ill child: prevalence, risk factors, and impaired outcome. Eur J Pediatr. 2018;177(3):345–53.

    PubMed  Google Scholar 

  • Valla FV, et al. Multiple micronutrient plasma level changes are related to oxidative stress intensity in critically ill children. Pediatr Crit Care. 2018;19(9):e455–63.

    Google Scholar 

  • Valla FV, et al. Nutritional status deterioration occurs frequently during children’s ICU stay. Pediatric Crit Care Med. 2019;20(8):714–21.

    Google Scholar 

  • Van den Berghe G, Bouillon R, Lauwers P. Intensive insulin therapy in critically ill patients. N Engl J Med. 2002;346:1587–8.

    Google Scholar 

  • Van den Berghe G, Wouters PJ, Bouillon R, et al. Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control. Crit Care Med. 2003;31:359–66.

    PubMed  Google Scholar 

  • Van Puffelen E, et al. Outcomes of delaying parenteral nutrition for 1 week vs initiation within 24 hours among undernourished children in the pediatric intensive care: a subanalysis of the PEPaNIC randomized clinical trial. JAMA Netw Open. 2018;1(5):e182668.

    PubMed  PubMed Central  Google Scholar 

  • Vlasselaers D, Milants I, Desmet L, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373:547–56.

    CAS  PubMed  Google Scholar 

  • Wintergerst KA, et al. Association of hyperglycemia, glucocorticoids, and insulin use with morbidity and mortality in the pediatric intensive care unit. J Diabetes. 2012;6(1):5–14.

    Google Scholar 

  • World Health Organization Human energy requirements: report of a joint FAO/WHO/UNU expert consultation; 2004, pp. 11–34.

    Google Scholar 

  • Zhao Y, et al. Tight glycemic control in critically ill pediatric patients: a meta-analysis and systemic review of randomized controlled trials. Pediatr Res. 2018;84(1):22–7.

    PubMed  Google Scholar 

  • Zhong JX, et al. Effect of nutritional support on clinical outcomes in perioperative malnourished pateints: a meta-analysis. Asia Pac J Clin Nutr. 2015;24(3):367–78.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Satchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satchell, M.A. (2021). Nutrition in Critical Illness. In: Lucking, S.E., Maffei, F.A., Tamburro, R.F., Zaritsky, A. (eds) Pediatric Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-53363-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53363-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53362-5

  • Online ISBN: 978-3-030-53363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics