Skip to main content

Sepsis

  • Chapter
  • First Online:
Pediatric Critical Care

Abstract

The management of a child with septic shock relies on a comprehensive understanding of the numerous disciplines embodied in the practice of pediatric critical care medicine. The child with septic shock may have simultaneous derangements in the function of virtually every system of the body including cardiovascular, respiratory, immune, renal, coagulation, hepatic, metabolic, and neurologic. The degree to which physiologic alterations are manifest in a given patient is variable and influenced by host and nonhost factors including the developmental stage, the presence of comorbidities, pathogen-related factors, and genetic influences on both the host inflammatory response and the response to pharmacologic agents, all combining to have a profound influence on outcome. The clinician must possess a systematic and multifaceted approach to these critically ill patients. The goal of this chapter is to provide a comprehensive description of the epidemiology, biology, and pathophysiology (at both the cellular and organ level) of sepsis, as well as outline the current principles of managing septic shock at both the individual and institutional level. It will be apparent that optimal management requires a strong working knowledge of cardiovascular physiology, infectious diseases, multiple organ interactions, immunity, coagulation, pharmacology, and the molecular biology of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

  • Aird WC. Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis. Crit Care Med. 2001;29:S28–34; discussion S34–5.

    CAS  PubMed  Google Scholar 

  • Annane D, Bellissant E, Bollaert PE, Briegel J, Keh D, Kupfer Y. Corticosteroids for severe sepsis and septic shock: a systematic review and meta-analysis. BMJ. 2004;329:480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arndt P, Abraham E. Immunological therapy of sepsis: experimental therapies. Intensive Care Med. 2001;27:S104–15.

    PubMed  Google Scholar 

  • Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.

    CAS  PubMed  Google Scholar 

  • Beutler B. Signal transduction during innate and adaptive immunity. Biochem Soc Trans. 2001;29:853–9.

    CAS  PubMed  Google Scholar 

  • Bohrer H, Qiu F, Zimmermann T, et al. Role of NFkappaB in the mortality of sepsis. J Clin Invest. 1997;100:972–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992;101:1481–3.

    CAS  PubMed  Google Scholar 

  • Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999;27:723–32.

    CAS  PubMed  Google Scholar 

  • Brierley J, Carcillo JA, Choong C, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009;37:666–88.

    PubMed  PubMed Central  Google Scholar 

  • Brightbill HD, Modlin RL. Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology. 2000;101:1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calandra T, Baumgartner JD, Grau GE, et al. Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis. 1990;161:982–7.

    CAS  PubMed  Google Scholar 

  • Ceneviva G, Paschall JA, Maffei FA, Carcillo JA. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics. 1998;102:e19.

    CAS  PubMed  Google Scholar 

  • Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45:1061–93.

    PubMed  Google Scholar 

  • Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.

    PubMed  Google Scholar 

  • Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.

    PubMed  Google Scholar 

  • Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999;11:211–8.

    CAS  PubMed  Google Scholar 

  • Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.

    CAS  PubMed  Google Scholar 

  • Gunn SR, Pinsky MR. Implications of arterial pressure variation in patients in the intensive care unit. Curr Opin Crit Care. 2001;7:212–7.

    CAS  PubMed  Google Scholar 

  • Heesterbeek DAC, Angelier ML, Harrison RA, Rooijakkers SHM. Complement and bacterial infections: from molecular mechanisms to therapeutic applications. J Innate Immun. 2018;10:455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development. Curr Opin Cell Biol. 1998;10:205–19.

    Google Scholar 

  • Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000;12:85–98.

    CAS  PubMed  Google Scholar 

  • Keh D, Sprung CL. Use of corticosteroid therapy in patients with sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32:S527–3.

    PubMed  Google Scholar 

  • Kumar A, Krieger A, Symeoneides S, Parrillo JE. Myocardial dysfunction in septic shock: part II. Role of cytokines and nitric oxide. J Cardiothorac Vasc Anesth. 2001;15:485–511.

    CAS  PubMed  Google Scholar 

  • Levi M, de Jonge E, van der Poll T. Rationale for restoration of physiological anticoagulant pathways in patients with sepsis and disseminated intravascular coagulation. Crit Care Med. 2001;29:S90–4.

    CAS  PubMed  Google Scholar 

  • Lin MT, Albertson TE. Genomic polymorphisms in sepsis. Crit Care Med. 2004;32:569–79.

    CAS  PubMed  Google Scholar 

  • Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchnic oxygen utilization in hyperdynamic sepsis. JAMA. 1994;272:1354–7.

    CAS  PubMed  Google Scholar 

  • Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med. 2001;29:2264–70.

    CAS  PubMed  Google Scholar 

  • Marshall JC, Maier RV, Jimenez M, Dellinger EP. Source control in the management of severe sepsis and septic shock: an evidence-based review. Crit Care Med. 2004;32:S513–26.

    PubMed  Google Scholar 

  • McGilvray ID, Rotstein OD. Role of the coagulation system in the local and systemic inflammatory response. World J Surg. 1998;22:179–86.

    CAS  PubMed  Google Scholar 

  • Meduri GU. New rationale for glucocorticoid treatment in septic shock. J Chemother. 1999;11:541–50.

    CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000;343:338–44.

    CAS  PubMed  Google Scholar 

  • Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117:1162–72.

    CAS  PubMed  Google Scholar 

  • Parker MM, Hazelzet JA, Carcillo JA. Pediatric considerations. Crit Care Med. 2004;32:S591–4.

    PubMed  Google Scholar 

  • Proulx F, Fayon M, Farrell CA, Lacroix J, Gauthier M. Epidemiology of sepsis and multiple organ dysfunction syndrome in children. Chest. 1996;109:1033–7.

    CAS  PubMed  Google Scholar 

  • Raggio MJ, Morris PE. Drotrecogin alfa. Drugs Today. 2004;40:517.

    CAS  Google Scholar 

  • Reeves JH, Butt WW, Shann F, et al. Continuous plasmafiltration in sepsis syndrome. Plasmafiltration in Sepsis Study Group. Crit Care Med. 1999;27:2096–104.

    CAS  PubMed  Google Scholar 

  • Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    CAS  PubMed  Google Scholar 

  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315:801–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strieter RM, Belperio JA, Kelley D, Sakkour A, Keane MP. Innate immune mechanisms triggering lung injury. In: Wong HR, Shanley TP, editors. Molecular biology of acute lung injury. Norwell: Kluwer Academic Publishers; 2001. p. 17–33.

    Google Scholar 

  • Vincent JL, Zhang H, Szabo C, Preiser JC. Effects of nitric oxide in septic shock. Am J Respir Crit Care Med. 2000;161:1781–5.

    CAS  PubMed  Google Scholar 

  • Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. AJRCCM. 2015;191:1147–57.

    Google Scholar 

  • Weiss SL, Peters MJ, Alhazzani W, et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med. 2020;21:e52–106.

    Google Scholar 

  • Wong HR, Shanley TP. Signal transduction pathways in acute lung injury: NF-κB and AP-1. In: Wong HR, Shanley TP, editors. Molecular biology of acute lung injury. Norwell: Kluwer Academic Publishers; 2001. p. 1–16.

    Google Scholar 

  • Wong HR, Cvijanovich NZ, Allen GL, et al. Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit Care Med. 2011;39:2511–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong HR, Cvijanovich NZ, Anas N, et al. Endotype transitions during the acute phase of pediatric septic shock reflect changing risk and treatment response. Crit Care Med. 2018;46:e242–e9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy T. Cornell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlton, E., Lorts, A., Shanley, T.P., Cornell, T.T. (2021). Sepsis. In: Lucking, S.E., Maffei, F.A., Tamburro, R.F., Zaritsky, A. (eds) Pediatric Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-53363-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53363-2_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53362-5

  • Online ISBN: 978-3-030-53363-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics