Advertisement

A Novel Multi-agent-based Chatbot Approach to Orchestrate Conversational Assistants

Conference paper
  • 543 Downloads
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 389)

Abstract

Nowadays, chatbots have become more and more prominent in various domains. Nevertheless, designing a versatile chatbot, giving reasonable answers, is a challenging task. Thereby, the major drawback of most chatbots is their limited scope. Multi-agent-based systems offer approaches to solve problems in a cooperative manner following the “divide and conquer” paradigm. Consequently, it seems promising to design a multi-agent-based chatbot approach scaling beyond the scope of a single application context. To address this research gap, we propose a novel approach orchestrating well-established conversational assistants. We demonstrate and evaluate our approach using six chatbots, providing higher quality than competing artifacts.

Keywords

Conversational agent Chatbot Multi-agent-based system Orchestration Collaboration Mediation Divide and conquer 

References

  1. 1.
    Ahmad, N.A., Che, M.H., Zainal, A., et al.: Review of chatbots design techniques. IJACSA 181(8), 7–10 (2018)Google Scholar
  2. 2.
    Klopfenstein, L.C., Delpriori, S., Malatini, S., et al.: The rise of bots: a survey of conversational interfaces, patterns, and paradigms. In: Proceedings of the 12th Conference on Designing Interactive Systems, pp. 555–565 (2017)Google Scholar
  3. 3.
    Chaves, A.P., Gerosa, M.A.: Single or multiple conversational agents? An interactional coherence comparison. In: Proceedings of the 36th CHI (2018)Google Scholar
  4. 4.
    Masche, J., Le, N.-T.: A review of technologies for conversational systems. In: Proceedings of the 5th ICCSAMA, pp. 212–225 (2017)Google Scholar
  5. 5.
    Dhanda, S.: How chatbots will transform the retail industry. Juniper Research (2018)Google Scholar
  6. 6.
    Abdul-Kader, S.A., Woods, J.C.: Survey on chatbot design techniques in speech conversation systems. IJACSA 6(7), 72–80 (2015)Google Scholar
  7. 7.
    Chen, H., Liu, X., Yin, D., et al.: A survey on dialogue systems: recent advances and new frontiers. ACM SIGKDD Explor. Newslett. 19(2), 25–35 (2017)CrossRefGoogle Scholar
  8. 8.
    Ramesh, K., Ravishankaran, S., Joshi, A., Chandrasekaran, K.: A survey of design techniques for conversational agents. In: Kaushik, S., Gupta, D., Kharb, L., Chahal, D. (eds.) ICICCT 2017. CCIS, vol. 750, pp. 336–350. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-6544-6_31CrossRefGoogle Scholar
  9. 9.
    Wallace, R.S.: The anatomy of ALICE. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test, pp. 181–210. Springer, Dordrecht (2009).  https://doi.org/10.1007/978-1-4020-6710-5_13CrossRefGoogle Scholar
  10. 10.
    Serban, I.V., Sankar, C., Germain, M., et al.: A deep reinforcement learning chatbot (2017)Google Scholar
  11. 11.
    Pichl, J., Marek, P., Konrád, J., et al.: Alquist: the Alexa prize socialbot. In: Proceedings of the 1st Alexa Prize (2017)Google Scholar
  12. 12.
    Huang, T.-H.K., Chang, J.C., Bigham, J.P.: Evorus: a crowd-powered conversational assistant built to automate itself over time. In: Proceedings of the 36th CHI (2018)Google Scholar
  13. 13.
    Papaioannou, I., Curry, A.C., Part, J.L., et al.: Alana: social dialogue using an ensemble model and a ranker trained on user feedback. In: Proceedings of the 1st Alexa Prize (2017)Google Scholar
  14. 14.
    Pinhanez, C.S., Candello, H., Pichiliani, M.C., et al.: Different but equal: comparing user collaboration with digital personal assistants vs. teams of expert agents (2018)Google Scholar
  15. 15.
    Janarthanam, S.: Hands-On Chatbots and Conversational UI Development. Packt Publishing, Birmingham (2017)Google Scholar
  16. 16.
    Chandar, P., et al.: Leveraging conversational systems to assists new hires during onboarding. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp. 381–391. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67684-5_23CrossRefGoogle Scholar
  17. 17.
    Jennings, N.R.: Commitments and conventions: the foundation of coordination in multi-agent systems. Knowl. Eng. Rev. 8(3), 223–250 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jennings, N.R.: An agent-based approach for building complex software systems. Commun. ACM 44(4), 35–41 (2001)CrossRefGoogle Scholar
  19. 19.
    Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent societies. a survey. In: Omicini, A., Zambonelli, F., Klusch, M. (eds.) Coordination of Internet Agents, pp. 197–224. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-662-04401-8_8
  20. 20.
    Peffers, K., Tuunanen, T., Rothenberger, M.A., et al.: A design science research methodology for information systems research. JMIS 24(3), 45–77 (2007)Google Scholar
  21. 21.
    Maglio, P.P., Matlock, T., Campbell, C.S., Zhai, S., Smith, B.A.: Gaze and speech in attentive user interfaces. In: Tan, T., Shi, Y., Gao, W. (eds.) ICMI 2000. LNCS, vol. 1948, pp. 1–7. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-40063-X_1CrossRefGoogle Scholar
  22. 22.
    Cui, L., Huang, S., Wei, F., et al.: Superagent. A customer service chatbot for e-commerce websites. In: Proceedings of the 55th Annual Meeting of the ACL, pp. 97–102 (2017)Google Scholar
  23. 23.
    Arentze, T., Timmermans, H.: Modeling the formation of activity agendas using reactive agents. Environ. Plan. B 29(5), 719–728 (2002)CrossRefGoogle Scholar
  24. 24.
    Ehlert, P., Rothkrantz, L.J.M.: Microscopic traffic simulation with reactive driving agents. In: 4th Proceedings of IEEE Intelligent Transportation Systems, pp. 861–866 (2001)Google Scholar
  25. 25.
    Rao, A.S., Georgeff, M.P.: BDI agents. In: 1st ICMAS, pp. 312–319 (1995)Google Scholar
  26. 26.
    Barua, A., Whinston, A.B., Yin, F.: Value and productivity in the internet economy. Computer 33(5), 102–105 (2000)CrossRefGoogle Scholar
  27. 27.
    Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: Proceedings of the 15th IJCAI, pp. 578–583 (1997)Google Scholar
  28. 28.
    Hettige, B., Karunananda, A.S.: Octopus: a multi agent chatbot. In: Proceedings of the 8th International Research Conference, pp. 41–47 (2015)Google Scholar
  29. 29.
    Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)CrossRefGoogle Scholar
  30. 30.
    Baskerville, R., Baiyere, A., Gregor, S., et al.: Design science research contributions: finding a balance between artifact and theory. JAIS 19, 358–376 (2018)CrossRefGoogle Scholar
  31. 31.
    Hevner, A.R., March, S.T., Park, J., et al.: Design science in information systems research. MIS Q. 28, 75–105 (2004)CrossRefGoogle Scholar
  32. 32.
    Labrou, Y., Finin, T., Peng, Y.: Agent communication languages: the current landscape. Intell. Syst. Appl. 14(2), 45–52 (1999)CrossRefGoogle Scholar
  33. 33.
    Park, S., An, D.U.: Automatic e-mail classification using dynamic category hierarchy and semantic features. IETE Tech. Rev. 27(6), 478–492 (2010)CrossRefGoogle Scholar
  34. 34.
    Li, N., Wu, D.D.: Using text mining and sentiment analysis for online forums hotspot detection and forecast. DSS 48(2), 354–368 (2010)Google Scholar
  35. 35.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).  https://doi.org/10.1023/A:1008202821328MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Russell, S.J., Norvig, P.: AI. A Modern Approach. Pearson Education, London (2010)Google Scholar
  37. 37.
    Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006).  https://doi.org/10.1007/11941439_114CrossRefGoogle Scholar
  38. 38.
    Skorochod’ko, E.F.: Adaptive method of automatic abstracting and indexing. In: Proceedings of the 5th Information Processing Congress, pp. 1179–1182 (1972)Google Scholar
  39. 39.
    Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Mach. Learn. 34(1–3), 177–210 (1999).  https://doi.org/10.1023/A:1007506220214CrossRefzbMATHGoogle Scholar
  40. 40.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)CrossRefGoogle Scholar
  41. 41.
    Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971)CrossRefGoogle Scholar
  42. 42.
    Dang, V., Croft, B.W.: Query reformulation using anchor text. In: Proceedings of the 3rd WSDM, pp. 41–50 (2010)Google Scholar
  43. 43.
    Mitsuku Dataset. https://github.com/pandorabots/Free-AIML. Accessed 06 Dec 2019
  44. 44.
    Rosie Dataset. https://github.com/pandorabots/rosie. Accessed 06 Dec 2019
  45. 45.
    Quora Dataset. https://www.kaggle.com/c/quora-question-pairs. Accessed 06 Dec 2019
  46. 46.
    Wikipedia Dataset. https://www.kaggle.com/rtatman/questionanswer-dataset. Accessed 06 Dec 2019
  47. 47.
    Ling, W., Yogatama, D., Dyer, C., et al.: Program induction by rationale generation: learning to solve and explain algebraic word problems. In: Proceedings of the 55th Annual Meeting of the ACL, pp. 158–167 (2017)Google Scholar
  48. 48.
    Bedué, P., Graef, R., Klier, M., et al.: A novel hybrid knowledge retrieval approach for online customer service platforms. In: Proceedings of the 26th ECIS (2018)Google Scholar
  49. 49.
    Aimpulse Spectrum. https://developer.aimpulse.com. Accessed 23 Aug 2019
  50. 50.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th IJCAI, vol. 14, no. 2, pp. 1137–1145 (1995)Google Scholar
  51. 51.
    Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)CrossRefGoogle Scholar
  52. 52.
    Stoeckli, E., Uebernickel, F., Brenner, W.: Exploring affordances of slack integrations and their actualization within enterprises-towards an understanding of how chatbots create value. In: Proceedings of the 51st HICSS (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University UlmUlmGermany

Personalised recommendations