Skip to main content

Cardinality Constrained Multilinear Sets

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12176))

Included in the following conference series:

Abstract

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set, and many valid inequalities for its convex hull are available in the literature. Motivated by a machine learning application, we study a cardinality constrained version of this problem with upper and lower bounds on the number of nonzero variables. We call the set of solutions of the standard linearization of this problem a cardinality constrained multilinear set, and give a complete polyhedral description of its convex hull when the multilinear terms in the problem have a nested structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buchheim, C., Klein, L.: Combinatorial optimization with one quadratic term: spanning trees and forests. Discrete Appl. Math. 177, 34–52 (2014)

    Article  MathSciNet  Google Scholar 

  2. Crama, Y., Rodríguez-Heck, E.: A class of valid inequalities for multilinear 0–1 optimization problems. Discrete Optim. 25, 28–47 (2017)

    Article  MathSciNet  Google Scholar 

  3. Dash, S., Gunluk, O., Wei, D.: Boolean decision rules via column generation. In: Advances in Neural Information Processing Systems, pp. 4655–4665 (2018)

    Google Scholar 

  4. Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs. Math. Oper. Res. 42(2), 389–410 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs. SIAM J. Optim. 28(2), 1049–1076 (2018)

    Article  MathSciNet  Google Scholar 

  6. Del Pia, A., Khajavirad, A.: On decomposability of multilinear sets. Math. Program. 170(2), 387–415 (2018)

    Article  MathSciNet  Google Scholar 

  7. Pia, D., Alberto, K., Aida, S., Nikolaos, V.: On the impact of running intersection inequalities for globally solving polynomial optimization problems. Math. Program. Comput. 1–27 (2019). https://doi.org/10.1007/s12532-019-00169-z

  8. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via column generation. Mach. Learn. 46, 225–254 (2002)

    Article  Google Scholar 

  9. Dobkin, D.P., Gunopulos, D., Maass, W.: Computing the maximum bichromatic discrepancy, with applications to computer graphics and machine learning. J. Comput. Syst. Sci. 52, 453–470 (1996)

    Article  MathSciNet  Google Scholar 

  10. Eckstein, J., Goldberg, N.: An improved branch-and-bound method for maximum monomial agreement. INFORMS J. Comput. 24(2), 328–341 (2012)

    Article  MathSciNet  Google Scholar 

  11. Eckstein, J., Kagawa, A., Goldberg, N.: REPR: rule-enhanced penalized regression. INFORMS J. Optim. 1(2), 143–163 (2019)

    Article  MathSciNet  Google Scholar 

  12. Fischer, A., Fischer, F.: Complete description for the spanning tree problem with one linearised quadratic term. Oper. Res. Lett. 41, 701–705 (2013)

    Article  MathSciNet  Google Scholar 

  13. Fischer, A., Fischer, F., McCormick, S.T.: Matroid optimisation problems with monotone monomials in the objective (2017, preprint)

    Google Scholar 

  14. Fischer, A., Fischer, F., McCormick, S.T.: Matroid optimisation problems with nested non-linear monomials in the objective function. Math. Program. 169(2), 417–446 (2017). https://doi.org/10.1007/s10107-017-1140-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldberg, N., Eckstein, J.: Boosting classifiers with tightened \(l_0\)-relaxation penalties. In: 27th International Conference on Machine Learning, Haifa, Israel (2010)

    Google Scholar 

  16. Golderg, N.: Optimization for sparse and accurate classifiers. Ph.D. thesis, Rutgers University, New Brunswick, NJ (2012)

    Google Scholar 

  17. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90(3), 429–457 (2001)

    Article  MathSciNet  Google Scholar 

  18. Mehrotra, A.: Cardinality constrained boolean quadratic polytope. Discrete Appl. Math. 79, 137–154 (1997)

    Article  MathSciNet  Google Scholar 

  19. Padberg, M.: The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45(1–3), 139–172 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, R., Dash, S., Günlük, O. (2020). Cardinality Constrained Multilinear Sets. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2020. Lecture Notes in Computer Science(), vol 12176. Springer, Cham. https://doi.org/10.1007/978-3-030-53262-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53262-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53261-1

  • Online ISBN: 978-3-030-53262-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics