Skip to main content

Sampling and Analysis Methods for Ant Diversity Assessment

  • Chapter
  • First Online:
Measuring Arthropod Biodiversity

Abstract

The current demand for studies on ants in general and their communities in particular has exponentially increased during the last decades. Much has already been said about ant sampling techniques, but we attempt to present a critical approach to the different available methods for sampling ants, their limitations, and their complementarity. We focus on sampling methods for ant inventories; entire ant colony sampling for a range of purposes, such as behavioral, cytogenetic, or population studies; and ant community studies. Methods presented here are valid for both tropical and temperate regions taking into account that ants are essentially thermophilous and found in lower richness and abundance in cold regions or during cold seasons. Sampling depends on the stratum of interest. Thus, different methods, or a combination of them, may be selected for soil-, litter-, or vegetation-associated ants. Regardless of the method used, some considerations must always be taken into account. The first of these is compatibility of data between the sampling methods. Be they pitfall traps, Winkler sack samples, or whatever, such sampling units must be treated independently from each another; otherwise the inferential statistics used may not be valid or used with caution as violation of independence may occur in two non-mutually exclusive general forms: pseudoreplication and spatial (or temporal) autocorrelation, for example, which are common mistakes in ant studies. We provide recommendations for statistical approaches to the data and different suggestions of analyses that can be used for the different kinds of data taken with ants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agosti D, Alonso LE (2000) The ALL protocol: a standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer JD, Alonso L et al (eds) Ants. Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 204–206

    Google Scholar 

  • Agosti D, Majer JD, de Alonso LE et al (eds) (2000) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington

    Google Scholar 

  • Albrecht M, Gotelli NJ (2001) Spatial and temporal niche partitioning in grassland ants. Oecologia 126(1):134–141. https://doi.org/10.1007/s004420000494

    Article  CAS  PubMed  Google Scholar 

  • Andersen AN, Hertog T, Woinarski JCZ (2006) Long-term fire exclusion and ant community structure in an Australian tropical savanna: congruence with vegetation succession. J Biogeogr 33:823–832

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

    Article  Google Scholar 

  • Anderson JM, Ingram JSI (eds) (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Wallingford

    Google Scholar 

  • Antonialli-Junior WF, Giannotti E, Pereira MC et al (2015) Biologia da nidificação e arquitetura de ninhos de formigas poneromorfas do Brasil. In: Delabie JHC, Feitosa RM, Serrão JE et al (eds) As formigas poneromorfas do Brasil. Editus, Ilhéus, pp 285–294

    Chapter  Google Scholar 

  • Baccaro FB, Ferraz G (2013) Estimating density of ant nests using distance sampling. Insectes Soc 60(1):103–110. https://doi.org/10.1007/s00040-012-0274-2

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

  • Basset Y, Springate ND, Aberlenc HP et al (1997) A review of methods for sampling arthropods in tree canopies. In: Stork NE, Adis J, Didham RK (eds) Canopy arthropods. Chapman and Hall, London, pp 27–52

    Google Scholar 

  • Beck L (1967) Die Bodenfauna des neotropischen Regenwaldes. In: Lent H (ed) Atas do Simpósio sobre a Biota Amazônica. Zoologia, vol 5. Conselho Nacional de Pesquisas, Rio de Janeiro, pp 97–101

    Google Scholar 

  • Berghoff SM, Weissflog A, Linsenmair KE et al (2002) Foraging of a hypogaeic army ant: a long neglected majority. Insect Soc 49:133–141. https://doi.org/10.1007/s00040-002-8292-0

  • Berghoff SM, Maschwitz U, Linsenmair KE (2003) Hypogaeic and epigaeic ant diversity on Borneo: evaluation of baited sieve buckets as a study method. Trop Zool 16:153–163. https://doi.org/10.1080/03946975.2003.10531192

    Article  Google Scholar 

  • Bestelmeyer BT, Agosti D, Alonso LE et al (2000) Field techniques for the study of ground-dwelling ants. In: Agosti D, Majer J, Alonso E et al (eds) Ants. Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 122–144

    Google Scholar 

  • Besuchet C, Burckhardt DH, Lobl I (1987) The “Winkler/Moczarski” eclector as an efficient extractor for fungus and litter Coleoptera. Coleopt Bull 41:392–394

    Google Scholar 

  • Bhaktar AP, Whitcomb WH (1975) Rearing arboreal ants in glass tubing. Fla Entomol 58:59–63

    Article  Google Scholar 

  • Bhatkar AP, Whitcomb WH (1970) Artificial diet for rearing various species of ants. Fla Entomol 53:229–232

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. https://doi.org/10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Bolker B (2020) bbmle: Tools for general maximum likelihood estimation. http://CRAN.R-project.org/package=bbmle

  • Brandão CRF, Silva RR, Delabie JHC (2012) Neotropical ants (Hymenoptera) functional groups: nutritional and applied implications. In: Panizzi AR, Parra JRP (eds) Bioecology and insect nutrition. CRC, Boca Raton, pp 213–236

    Google Scholar 

  • Broman KW, Woo KH (2018) Data organization in spreadsheets. Am Stat 72:2–10. https://doi.org/10.1080/00031305.2017.1375989

  • Burnham KP, Anderson DR (eds) (2002) Model selection and multimodel inference: A practical information-theoretic approach. 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Caitano B, Dodonov P, Delabie JHC (2018) Edge, area and anthropization effects on mangrove-dwelling ant communities. Acta Oecol 91:1–6. https://doi.org/10.1016/j.actao.2018.05.004

    Article  Google Scholar 

  • Camarota F, Vasconcelos HL, Koch EBA et al (2018) Discovery and defense define the social foraging strategy of neotropical arboreal ants. Behav Ecol Sociobiol 72:2–11. 10.1007/s00265-018-2519-1

    Article  Google Scholar 

  • Cardoso DC, Cristiano MP, Tavares MG (2011) Methodological remarks on rearing basal Attini ants in the laboratory for biological and evolutionary studies: overview of the genus Mycetophylax. Insectes Soc 58:427–430. https://doi.org/10.1007/s00040-011-0160-3

    Article  Google Scholar 

  • Castaño-Meneses G, Palacios-Vargas JG, Carmo AFR (2015) Colêmbolos e outros inquilinos de formigueiros de poneromorfas. In: Delabie JHC, Feitosa RM, Serrão JE et al (eds) As formigas Poneromorfas do Brasil. Editus, Ilhéus, pp 389–401

    Chapter  Google Scholar 

  • Castaño-Meneses G, Palacios-Vargas JG, Delabie JHC et al (2017) Springtails (Collembola) associated with nests of fungus-growing ants (Formicidae: Myrmicinae: Attini) in southern Bahia, Brazil. Fla Entomol 100(4):740–742. https://doi.org/10.1653/024.100.0421

    Article  Google Scholar 

  • Castaño-Meneses G, Santos RJ, Santos JRM et al (2019) Invertebrates associated to Ponerine ants nests in two cocoa farming systems in the southeast of the state of Bahia, Brazil. Trop Ecol 60(1):52–61. https://doi.org/10.1007/s42965-019-00006-3

    Article  Google Scholar 

  • Castro D, Fernández F, Meneses AD et al (2018) A preliminary checklist of soil ants (Hymenoptera: Formicidae) of Colombian Amazon. Biodiv Data J 6:e29278. https://doi.org/10.3897/BDJ.6.e29278

    Article  Google Scholar 

  • Chen X, MacGown JA, Adams BJ et al (2012) First record of Pyramica epinotalis (Hymenoptera: Formicidae) for the United States. Psyche 2012:1–7. https://doi.org/10.1155/2012/850893

    Article  Google Scholar 

  • Chen X, Adams B, Sabo A et al (2016) Ant assemblages and co-occurrence patterns in cypress-tupelo swamp. Wetlands 36:1–13. https://doi.org/10.1007/s13157-016-0795-y

    Article  Google Scholar 

  • Chomicki G, Renner SS (2017) The interactions of ants with their biotic environment. Proc R Soc B 284:20170013. https://doi.org/10.1098/rspb.2017.0013

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobb M, Watkins K, Silva EV et al (2006) An exploratory study on the use of bamboo pieces for trapping entire colonies of arboreal ants (Hymenoptera: Formicidae). Sociobiology 47:215–223

    Google Scholar 

  • Colegrave N, Ruxton GD (2018) Using biological insight and pragmatism when thinking about pseudoreplication. Trends Ecol Evol 33:28–35. https://doi.org/10.1016/j.tree.2017.10.007

    Article  PubMed  Google Scholar 

  • Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published. http://purl.oclc.org/estimates

  • Corbara B, Leroy C, Orivel J et al (2019) Relaciones entre las hormigas y las plantas en los trópicos del Nuevo Mundo. In: Fernández F, Guerrero R, Delsinne T (eds) Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp 203–254

    Google Scholar 

  • Czechowski W, Pisarski B (1992) Laboratory methods for rearing ants (Hymenoptera, Formicoidea). Memorabilia Zool 45:1–32

    Google Scholar 

  • DaRocha WD, Ribeiro SP, Neves FS et al (2015) How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecol News 21:83–92

    Google Scholar 

  • DaRocha WD, Neves FS, Dáttilo W et al (2016) Epiphytic bromeliads as key components for maintenance of ant diversity and ant-bromeliad interactions in agroforestry system canopies. Forest Ecol Manag 372:128–136. https://doi.org/10.1016/j.foreco.2016.04.011

    Article  Google Scholar 

  • Dasu T, Johnson T (2003) Exploratory data mining and data cleaning. Wiley, Hoboken

    Book  Google Scholar 

  • Davidson DW, Arias JA, Mann J (2006) An experimental study of bamboo ants in Western Amazonia. Insect Soc 53:108–114. https://doi.org/10.1007/s00040-005-0843-8

    Article  Google Scholar 

  • Dejean A, Corbara B, Orivel J et al (2007) Rainforest canopy ants: the implications of territoriality and predatory behavior. Funct Ecosyst Commun 1:105–120

    Google Scholar 

  • Dejean A, Fisher BL, Corbara B et al (2010) Spatial distribution of dominant arboreal ants in a Malagasy coastal rainforest: gaps and presence of an invasive species. PLoS One 5:e9319. https://doi.org/10.1371/journal.pone.0009319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dejean A, Ryder S, Bolton B et al (2015) How territoriality and host-tree taxa determine the structure of ant mosaics. The Science of Nature 102(33):5–6. https://doi.org/10.1007/s00114-015-1282-7

    Article  CAS  Google Scholar 

  • Delabie JHC (1989) Avaliação preliminar de técnica alternativa de controle da formiga “pixixica” Wasmannia auropunctata em cacauais, Agrotropica, 1(1):75–78

    Google Scholar 

  • Delabie JHC (1999) Comunidades de formigas (Hymenoptera; Formicidae): métodos de estudo e estudos de casos na Mata Atlântica. Resumos, XII Encontro de Zoologia do Nordeste, Feira de Santana–BA, pp 58–68

    Google Scholar 

  • Delabie JHC (2001) Trophobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotrop Entomol 30:501–516

    Article  Google Scholar 

  • Delabie JHC, Reis YT (2000) Sympatry and mating flight synchrony of three species of Cylindromyrmex (Hymenoptera, Formicidae) in southern Bahia, Brazil, and the importance of malaise trap for rare ants’ inventory. Rev Bras Entomol 44:109–110

    Google Scholar 

  • Delabie JHC, Fisher BL, Majer JD et al (2000a) Sampling effort and choice of methods. In: Agosti D, Majer JD, Alonso L et al (eds) Ants. Standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 145–154

    Google Scholar 

  • Delabie JHC, Fresneau D, Pezon A (2000b) Notes on the ecology of Thaumatomyrmex spp. (Hymenoptera: Formicidae: Ponerinae) in Southeast Bahia, Brazil. Sociobiology 36(3):571–584

    Google Scholar 

  • Delabie JHC, Jahyny B, Nascimento IC et al (2007) Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil. Biodivers Conserv 16:2359–2384. https://doi.org/10.1007/s10531-007-9190-6

    Article  Google Scholar 

  • Delsinne T, Leponce M, Theunis L et al (2008) Rainfall influences ant sampling in dry forests. Biotropica 40(5):590–596. https://doi.org/10.1111/J.1744-7429.2008.00414.x

    Article  Google Scholar 

  • Espadaler X, López-Soria L (1991) Rareness of certain Mediterranean ant species: fact or artefact? Insect Soc 38:365–377

    Article  Google Scholar 

  • Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5(1):2–14

    Article  Google Scholar 

  • Floren A, Linsenmair KE (1997) Diversity and recolonization dynamics of selected arthropod groups on different tree species in a lowland rainforest in Sabah, Malaysia with special reference to Formicidae. In: Stork NE, Adis J, Didham RK (eds) Canopy arthropods. Chapman and Hall, London, pp 344–381

    Google Scholar 

  • Floren A, Westzel W, Staab M (2014) The contribution of canopy species to overall ant diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems. Myrmecol News 19:65–74

    Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodivers Conserv 7:1221–1244

    Article  Google Scholar 

  • Forti LC, Moreira AA, Andrade APP, Castellani MA, Caldato N (2011) Nidificação e arquitetura de ninhos de formigas-cortadeiras. In: Della Lucia TMC (ed) Formigas-cortadeiras, da Bioecologia ao Manejo. Editora UFV, Viçosa, pp 102–125

    Google Scholar 

  • Fowler HG, Delabie JHC (1995) Resource partitioning among epigaeic and hypogaeic ants (Hymenoptera: Formicidae) of a Brazilian cocoa plantation. Ecol Austral 5:117–124

    Google Scholar 

  • Fowler HG, Forti LC, Brandão CRF et al (1991) Ecologia nutricional de formigas. In: Panizzi AP, JRP P (eds) Ecologia Nutricional de Insetos e suas Implicações no Manejo de Pragas. Manole, São Paulo, pp 131–223

    Google Scholar 

  • Frizzo TLM, Campos RI, Vasconcelos HL (2011) Contrasting effects of fire on arboreal and ground-dwelling ant communities of a Neotropical savanna. Biotropica 44:254–261. https://doi.org/10.1111/j.1744-7429.2011.00797.x

    Article  Google Scholar 

  • Gomes CB, Souza JLP, Franklin E (2018) A comparison between time of exposure, number of pitfall traps and the sampling cost to capture ground-dwelling poneromorph ants (Hymenoptera: Formicidae). Sociobiology 65(2):138–148. https://doi.org/10.13102/sociobiology.v65i2.1207

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Gotelli NJ, Ellison AM (2011) Princípios de Estatística em Ecologia. Artmed, Porto Alegre

    Google Scholar 

  • Griffith DM, Veech JA, Marsh CJ (2016) Cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw 69(2):1–17. https://doi.org/10.18637/jss.v069.c02

    Article  Google Scholar 

  • Groc S, Orivel J, Dejean A et al (2009) Baseline study of the leaf-litter ant fauna in a French Guianese Forest. Insect Conserv Divers 2:183–193

    Article  Google Scholar 

  • Guénard B, Lucky A (2011) Shuffling leaf litter samples produces more accurate and precise snapshots of terrestrial arthropod community composition. Environ Entomol 40(6):1523–1529. https://doi.org/10.1603/en11104

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Herbers JM (1989) Community structure in north temperate ants: temporal and spatial variation. Oecologia 81(2):201–211

    Article  PubMed  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Imai HT, Crosland MWJ, Crozier RH (1988) Modes of spontaneous chromosome mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn J Genet 63:113–125

    Article  Google Scholar 

  • Jacquemin J, Roisin Y, Leponce M (2016) Spatio-temporal variation in ant (Hymenoptera: Formicidae) communities in leaf-litter and soil layers in a premontane tropical forest. Myrmecol News 22:129–139

    Google Scholar 

  • Johnson AF, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice-Hall International, Englewood Cliffs, NJ

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kaspari M (2000) Do imported fire ants impact canopy arthropods? Evidence from simple arboreal pitfall traps. Southwest Nat 45:118–122. https://doi.org/10.2307/3672451

    Article  Google Scholar 

  • Kaspari M, Pickering J, Longino JT et al (2001) The phenology of a Neotropical ant assemblage: evidence for continuous and overlapping reproduction. Behav Ecol Sociobiol 50:382–390. https://doi.org/10.1007/s002650100378

    Article  Google Scholar 

  • Klimes P, Janda M, Ibalim S et al (2011) Experimental suppression of ants foraging on rainforest vegetation in New Guinea: testing methods for a whole-forest manipulation of insect communities. Ecol Entomol 36:94–103. https://doi.org/10.1111/j.1365-2311.2010.01250.x

    Article  Google Scholar 

  • Koch EBA, Camarota FC, Vasconcelos HL (2016) Plant ontogeny as a conditionality factor in the protective effect of ants on a Neotropical tree. Biotropica 48:198–205. https://doi.org/10.1111/btp.12264

    Article  Google Scholar 

  • Koch EBA, Santos JRM, Nascimento IC, Delabie JHC (2019) Comparative evaluation of taxonomic and functional diversities of leaf-litter ants of the Brazilian Atlantic Forest. Turk J Zool 43:437–456. https://doi.org/10.3906/zoo-1811-7

  • Lasmar CJ, Queiroz ACM, Rabello AM et al (2017) Testing the effect of pitfall-trap installation on ant sampling. Insect Soc 64:445–451. https://doi.org/10.1007/s00040-017-0558-7

    Article  Google Scholar 

  • Lattke JE (2000) Specimen processing, building and curating an ant collection. In: Agosti D, Majer JD, Alonso L et al (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution, Washington, pp 155–171

    Google Scholar 

  • Leal IR, Oliveira PS (1998) Interactions between fungus-growing ants (Attini), fruits and seeds in cerrado vegetation in Southeast Brazil. Biotropica 30:170–178

    Article  Google Scholar 

  • Leal IR, Oliveira PS (2000) Foraging ecology of attine ants in a Neotropical savanna: seasonal use of fungal substrate in the cerrado vegetation of Brazil. Insect Soc 47:376–382. https://doi.org/10.1007/PL00001734

    Article  Google Scholar 

  • Lengyel S, Gove AD, Latimer AM et al (2009) Ants sow the seeds of global diversification in flowering plants. PLoS One 4(5):e5480. https://doi.org/10.1371/journal.pone.0005480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leponce M, Theunis L, Delabie JHC et al (2004) Scale dependence of diversity measures in a leaf-litter ant assemblage. Ecography 27:253–267. https://doi.org/10.1111/j.0906-7590.2004.03715.x

    Article  Google Scholar 

  • Leponce M, Meyer C, Häuser CL et al (2010) Challenges and solutions for planning and implementing large-scale biotic inventories. In: Eymann J, Degreef J, Häuser C et al (eds) Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories and Monitoring, vol 8. Abc Taxa, London, pp 18–48

    Google Scholar 

  • Leponce M, Novotny V, Pascal O et al (2016) Land module of our planet reviewed - Papua New Guinea: aims, methods and first taxonomical results. In: Robillard T, Legendre F, Villemant C, Leponce M (eds) Insects of Mount Wilhelm, Papua New Guinea. Mémoires du Muséum National d’Histoire Naturelle, vol 209, pp 13–48

    Google Scholar 

  • Leponce M, Delabie JHC, Orivel J et al (2019) Tree-dwelling ant survey (Hymenoptera, Formicidae) in Mitaraka, French Guiana, in Touroult J. (ed.), “Our Planet Reviewed” 2015 large-scale biotic survey in Mitaraka. French Guiana. Zoosystema 41(10):163–179. https://doi.org/10.5252/zoosystema2019v41a10

    Article  Google Scholar 

  • Levings SC (1983) Seasonal, annual, and among-site variation in the ground ant community of a deciduous tropical forest: some causes of patchy species distributions. Ecol Monogr 53(4):435–455. https://doi.org/10.2307/1942647

    Article  Google Scholar 

  • Lopes CT, Vasconcelos HL (2008) Evaluation of three methods for sampling ground-dwelling ants in the Brazilian Cerrado. Neotrop Entomol 37(4):399–405. https://doi.org/10.1590/s1519-566x2008000400007

    Article  PubMed  Google Scholar 

  • Lopes JMS, Oliveira AR, Delabie JHC et al (2015) A new species of myrmecophile mite of the genus Oplitis (Acari: Mesostigmata: Oplitidae) from Brazil. Int J Acarol 41(8):676–680. https://doi.org/10.1080/01647954.2015.1096960

    Article  Google Scholar 

  • Lynch JF (1981) Seasonal, successional, and vertical segregation in a Maryland ant community. Oikos 37:183–198

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Majer JD (1990) The abundance and diversity of arboreal ants in northern Australia. Biotropica 22:191–199

    Article  Google Scholar 

  • Majer JD (1992) Comparison of the arboreal ant mosaic in Ghana, Brasil, Papua New Guinea and Australia - its structure and influence on ant diversity. In: LaSalle J, Gauld I (eds) Hymenoptera and biodiversity. CAB International, Wallingford, pp 115–141

    Google Scholar 

  • Majer JD, Delabie JHC (1994) Comparison of the ant communities of annually inundated and terra firme forests at Trombetas in the Brazilian Amazon. Insect Soc 41:343–359. https://doi.org/10.1007/BF01240639

    Article  Google Scholar 

  • Majer JD, Greenslade P (2012) Soil and litter invertebrates. In: Specht RL, Rundel PW, Westman WE et al (eds) Mediterranean-type ecosystems: a data source book, vol 19. Springer, Dordrecht, pp 197–226

    Google Scholar 

  • Marques GDV, Del-Claro K (2006) The ant fauna in a cerrado area: the influence of vegetation structure and seasonality (Hymenoptera: Formicidae). Sociobiology 47(1):235–252

    Google Scholar 

  • Martins MFO, Thomazini MJ, Baretta D et al (2020) Accessing the subterranean ant fauna (Hymenoptera: Formicidae) in native and modified subtropical landscapes in the Neotropics. Biota Neotropica 20:e20190782. https://doi.org/10.1590/1676-0611-bn-2019-0782

    Article  Google Scholar 

  • Morini M, Yashima M, Zene Y et al (2004) Observations on Acanthostichus quadratus (Hymenoptera: Formicidae: Cerapachyinae) visiting underground baits and fruits of the Syagrus romanzoffiana, in an area of the Atlantic Forest, Brazil. Sociobiology 43:573–578

    Google Scholar 

  • Mueller UG, Wcislo WT (1998) Nesting biology of the fungus-growing ant Cyphomyrmex longiscapus Weber (Attini, Formicidae). Insect Soc 45:181–189. https://doi.org/10.1007/s000400050078

    Article  Google Scholar 

  • Nascimento IC, Delabie JHC, Ferreira PSF, Della Lucia TMC (2004) Mating flight seasonality in the genus Labidus at Minas Gerais, in the Brazilian Atlantic forest biome, and Labidus nero, junior synonym of Labidus mars. Sociobiology 44(3):615–622

    Google Scholar 

  • Nascimento IC, Delabie JHC, Della Lucia TMC (2011) Phenology of mating flight in Ecitoninae (Hymenoptera: Formicidae) in a Brazilian Atlantic Forest location. Ann Soc Entomol Fr 47(1–2):112–118. https://doi.org/10.1080/00379271.2011.10697702

    Article  Google Scholar 

  • Ning D, Yang F, Xiao Q et al (2019) A simple and efficient method for preventing ant escape (Hymenoptera: Formicidae). Myrmecol News 29:57–65. https://doi.org/10.25849/myrmecol.news_029:057

    Article  Google Scholar 

  • Nunes FA, Segundo GBM, Vasconcelos YB et al (2011) Ground-foraging ants (Hymenoptera: Formicidae) and rainfall effect on pitfall trapping in a deciduous thorn woodland (Caatinga), northeastern Brazil. Rev Bio Trop 59:1637–1650. https://doi.org/10.15517/rbt.v59i4.3426

    Article  Google Scholar 

  • Oksanen L (2001) Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94:27–38. https://doi.org/10.1034/j.1600-0706.2001.11311.x

    Article  Google Scholar 

  • Oksanen J, Blanchet F, Kindt R et al (2012) Vegan: Community Ecology Package, R Package Version 2.0–10. https://cran.r-project.org/web/packages/vegan

    Google Scholar 

  • Oliveira-Santos LGR, Loyola RD, Vargas AB (2009) Armadilhas de dossel: uma técnica para amostrar formigas no estrato vertical de florestas. Neotrop Entomol 38:691–694

    Article  PubMed  Google Scholar 

  • Oliver I, Pik A, Britton D, Dangerfield M, Colwell RK, Beattie AJ (2000) Virtual biodiversity assessment systems. Bioscience 50(5):441–450. https://doi.org/10.1641/0006-3568(2000)050[0441:VBAS]2.0.CO;2

    Article  Google Scholar 

  • Orsolon-Souza G, Esbérard CEL, Mayhé-Nunes AJ et al (2011) Comparison between Winkler’s extractor and pitfall traps to estimate leaf litter ants’ richness (Formicidae) at a rainforest site in Southeast Brazil. Braz J Biol 71(4):873–880. https://doi.org/10.1590/S1519-69842011000500008

    Article  Google Scholar 

  • Palacios-Vargas JG, Mejía-Recamier BE, Zeppelini D (eds) (2013) Técnicas atuais para estudo de micro e mesoartrópodes de solo. Eduepb, Campina Grande, Paraíba, Brazil

    Google Scholar 

  • Peeters C, Crewe R (1984) Insemination controls the reproductive division of labour in a ponerine ant. Naturwissenschaften 71:50–51. https://doi.org/10.1007/BF00365989

    Article  Google Scholar 

  • Pereira MC, Delabie JHC, Súarez YR et al (2013) Spatial connectivity of aquatic macrophytes and flood cycle influence species richness of an ant community of a Brazilian floodplain. Sociobiology 60(1):41–49

    Article  Google Scholar 

  • Perfecto I, Snelling R (1995) Biodiversity and the transformation of a tropical agroecosystem: ants in coffee plantations. Ecol Appl 5:1084–1097

    Article  Google Scholar 

  • Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10:155–157

    Article  Google Scholar 

  • Porter SD (1989) Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera: Formicidae). J Kans Entomol Soc 62:288–291

    Google Scholar 

  • Powell S, Costa AN, Lopes CT et al (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. J Anim Ecol 80:352–360. https://doi.org/10.1111/j.1365-2656.2010.01779.x

    Article  PubMed  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rabello AM, Queiroz ACM, Lasmar CJ et al (2015) When is the best period to sample ants in tropical areas impacted by mining and in rehabilitation process? Insect Soc 62:227–236. https://doi.org/10.1007/s00040-015-0398-2

    Article  Google Scholar 

  • Regazzi AJ (2001) Análise multivariada, notas de aula INF 766. Universidade Federal de Viçosa, Centro de Ciências Exatas e Tecnológicas. Departamento de Informática, Apostila de disciplina, Viçosa

    Google Scholar 

  • Reis YT, Delabie JHC (1999) Estudo de uma comunidade de Pseudomyrmecinae usando armadilhas de Malaise numa reserva de Mata Atlântica em Porto Seguro, Bahia. Naturalia 24:119–121

    Google Scholar 

  • Ribas CR, Schoereder JH, Pic M et al (2003) Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol 28:305–314. https://doi.org/10.1046/j.1442-9993.2003.01290.x

    Article  Google Scholar 

  • Ribeiro SP, Espírito Santo NB, Delabie JHC et al (2013) Competition, resources and the ant (Hymenoptera: Formicidae) mosaic: a comparison of upper and lower canopy. Myrmecol News 18:113–120

    Google Scholar 

  • Ryder Wilkie KT, Mertl AL, Traniello JF (2007) Biodiversity below ground: probing the subterranean ant fauna of Amazonia. Naturwissenschaften 94:725–731. https://doi.org/10.1007/s00114-007-0250-2

    Article  CAS  PubMed  Google Scholar 

  • Ryder Wilkie KT, Mertl AL, Traniello JFA (2010) Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLOS One 5(10):e13146. https://doi.org/10.1371/journal.pone.0013146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samways MJ (1981) Comparison of ant community structure (Hymenoptera: Formicidae) in citrus orchards under chemical and biological control of red scale, Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae). B Entomol Res 71:663–670

    Google Scholar 

  • Schilling AC, Batista JLF (2008) Curva de acumulação de espécies e suficiência amostral em florestas tropicais. Braz J Bot 31:179–187

    Article  Google Scholar 

  • Schmidt FA, Solar RRC (2010) Hypogaeic pitfall traps: methodological advances and remarks to improve the sampling of a hidden ant fauna. Insectes Soc 57:261–266. https://doi.org/10.1007/s00040-010-0078-1

    Article  Google Scholar 

  • Schmidt FA, Ribas CR, Schoereder JH (2013) How predictable is the response of ant assemblages to natural forest recovery? Implications for their use as bioindicators. Ecol Indic 24:158–166. https://doi.org/10.1016/j.ecolind.2012.05.031

    Article  Google Scholar 

  • Schultz TR (1993) Stalking the wild attine. Notes from Underground 8:7–10

    Google Scholar 

  • Silva RR, Brandão CRF (2014) Ecosystem-wide morphological structure of leaf litter ant communities along a tropical latitudinal gradient. PLOS One 9:e93049. https://doi.org/10.1371/journal.pone.0093049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MR Jr, Miranda MMA, Luz HP et al (2007) Nidificação de Cyphomyrmex transversus Emery (Formicidae: Myrmicinae) em áreas de pastagens no município de Itapetinga, BA. O Biológico 69(2):261–265

    Google Scholar 

  • Silva FS, Souza RM, Solar RR et al (2017) Ant diversity in Brazilian tropical dry forests across multiple vegetation domains. Environ Res Lett 12:035002. https://doi.org/10.1088/1748-9326/aa5f2a/meta

    Article  Google Scholar 

  • Solomon SE, Mueller UG, Schultz TR et al (2004) Nesting biology of the fungus growing ants Mycetarotes Emery (Attini, Formicidae). Insect Soc 51:333–338. https://doi.org/10.1007/s00040-004-0742-4

    Article  Google Scholar 

  • Sosa-Calvo J, Jesovnik A, Okonski E et al (2015) Locating, collecting, and maintaining colonies of fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Sociobiology 62(2):300–320. https://doi.org/10.13102/sociobiology.v62i2.300-320

    Article  Google Scholar 

  • Southwood TRE (1978) Ecological methods: with particular reference to the study of insect populations, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Souza JLP, Baccaro FB, Landeiro VL et al (2012) Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Appl Soil Ecol 56:63–73. https://doi.org/10.1016/j.apsoil.2012.01.004

    Article  Google Scholar 

  • Stadler B, Dixon T (2008) Mutualism: ants and their insect partners. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Steiner A, Haüser CL (2010) Recording insects by light traps. In: Eymann J, Degreef J, Häuser C et al (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring, vol 8. Abc Taxa, London, pp 400–422

    Google Scholar 

  • Sudd JH, Franks NR (1987) The behavioural ecology of ants. Blackie & Son, Glasgow

    Book  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species–accumulation curve and estimation of species richness. J Animal Ecol 72:888–897. https://doi.org/10.1046/j.1365-2656.2003.00748.x

    Article  Google Scholar 

  • van Achterberg C, Grootaert P, Shaw MR (2010) Flight interception traps for arthropods. In: Eymann J, Degreef J, Häuser C et al (eds) Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring, vol 8. Abc Taxa, London, pp 423–462

    Google Scholar 

  • Vasconcelos HL, Vilhena JMS, Caliri GJA (2000) Responses of ants to selective logging of a central Amazonian forest. J Appl Ecol 37:508–514. https://doi.org/10.1046/j.1365-2664.2000.00512.x

    Article  Google Scholar 

  • Vasconcelos HL, Maravalhas JB, Feitosa RM et al (2018) Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. J Biogeogr 45:248–258. https://doi.org/10.1111/jbi.13113

    Article  Google Scholar 

  • Veech JA (2013) A probabilistic model for analyzing species co-occurrence. Glob Ecol Biogeogr 22:252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x

    Article  Google Scholar 

  • Weber NA (1966) Fungus-growing ants. Science 153:587–604

    Article  CAS  PubMed  Google Scholar 

  • Weber NA (1972) Gardening ants: the Attines. Memoirs of the American Philosophical Society 92. American Philosophical Society, Philadelphia

    Google Scholar 

  • Wheeler WM (1907) Fungus growing-ants of North America. Bull Am Mus Nat Hist 23:1865–1937

    Google Scholar 

  • Wickham H (2014) Tidy data. Journal of statistical software 59:1–23. https://doi.org/10.18637/jss.v059.i10

    Article  Google Scholar 

  • Wong MKL, Guénard B (2017) Subterranean ants: summary and perspectives on field sampling methods, with notes on diversity and ecology (hymenoptera: Formicidae). Myrmecol News 25:1–16. https://doi.org/10.25849/myrmecol.news_025:001

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc B 73(1):3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x

  • Wood S, Scheipl F (2020) gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-6. https://CRAN.R-project.org/package=gamm4

  • Zuur A, Ieno EN, Walker N, Saveliev AA et al (2009) Mixed effects models and extensions in ecology with R. Springer, Dordrecht

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank the editors for their kind invitation to participate to this volume. Thanks are deserved to Isabelle Bachy (RBINS) who kindly helped to improve the layout of the figures. JHCD and CSFM acknowledge their research grants from CNPq.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delabie, J. et al. (2021). Sampling and Analysis Methods for Ant Diversity Assessment. In: Santos, J.C., Fernandes, G.W. (eds) Measuring Arthropod Biodiversity. Springer, Cham. https://doi.org/10.1007/978-3-030-53226-0_2

Download citation

Publish with us

Policies and ethics