Skip to main content

Sodium Silicate Molding Sands

  • Chapter
  • First Online:
Mold and Core Sands in Metalcasting: Chemistry and Ecology

Abstract

Molding sands with water glass belong to the group of sands which are human and environment-friendly. Water glass as a binder of molding sands has been known since the middle of the twentieth century. Irreversible reactions, occurring between water glass and liquid hardeners (organic esters) or CO2, are applied for molding sand hardening. In order to improve disadvantageous properties of these sands (e.g., bad knocking out), water glass is subjected to physical or chemical modifications. As a result of such modifications, the water glass-based new binders, environmental-friendly, are formed. The known world companies from many years are performing investigations of molding sands (CORDIS®, Hüttenes Albertus; INOTEC®, ASK Chemicals; AWB®, Minelco), where water glass hardening occurs as a result of warming core boxes and core blowing by hot air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owusu YA (1982) Physical-chemistry study of sodium silicate as a foundry sand binder. Adv Colloid Interf Sci 18:57–91

    Article  CAS  Google Scholar 

  2. Major-Gabryś K (2006) Molding sand with sodium silicate with better knock-out properties. PhD Thesis, AGH University of Science and Technology in Crakow, Poland. (in Polish)

    Google Scholar 

  3. Lewandowski JL (1997) Materials for foundry moulds. AKAPIT, Cracow. (in Polish)

    Google Scholar 

  4. Polzin H (2009) Anorganische chemische Binder. Giesserei 69:74–76

    Google Scholar 

  5. Major-Gabrys K (2019) Environmentally friendly foundry molding and core sands. J Mater Eng Perform 28(7):3905–3991

    Article  CAS  Google Scholar 

  6. Thole JA (2010) Measurement of elastic modulus as a function of temperature. The University of Iowa, Iowa City

    Google Scholar 

  7. Stachowicz M, Granat K, Obuchowski P (2017) Evaluation of the possibilities of sodium silicate sands application in automated hot-box process of cores shooting. Arch Foundry Eng 17:155–160

    Article  CAS  Google Scholar 

  8. Izdebska-Szanda I, Baliński A (2011) New generation of ecological silicate binders. Procedia Eng 10:887–893

    Article  CAS  Google Scholar 

  9. Jin G, Weil J, Sun Y, Xue M, Feng X, Yin D (2010) The research on core making technology on sodium silicate cold box. Proceedings of 69th World Foundry Congress, pp 16–20

    Google Scholar 

  10. Zhang L, Liu Y (2001) Properties, preparation and application of ultra-fine powder. J North China Inst Technol 22:38–48

    Google Scholar 

  11. Chun Xi Z (2007) Recent advances in water glass sand technologies. China Foundry 4:13–17

    Google Scholar 

  12. ASK Chemicals (2014) INOTEC – technological advantages. http://www.ask-chemicals.com/fileadmin/user_upload/Download_page/foundry_products_brochures/EN/INOTEC_Overview_EN.pdf

  13. Głód A (2007) Inorganic binder CORDIS – technology and machines. Xth Foundry Conference Technical, Nowa Sól, Poland. (in Polish)

    Google Scholar 

  14. Wolff T, Steinhaeuser T (2004) AWB – an environment friendly core production technology. Giesserei 91:80–84

    CAS  Google Scholar 

  15. Steinhäuser T, Wolff A (2006) AWB – an environment friendly core production technology. WFC World Foundry Congress: Casting the Future, Harrogate, UK

    Google Scholar 

  16. Behrens SH, Grier DG (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716–6721

    Article  CAS  Google Scholar 

  17. Muller J, Deters H, Oberleiter M, Zupan H, Lincke H, Resch R et al (2015) Nothing is impossible – advancements in the field of inorganic binder systems. Cast Plant Technol 2:16–22

    Google Scholar 

  18. Wallenhorst C (2010) Chemical background of inorganic binder system – focus on core production at the molecular level. Giesserei Rundschau 57:50–52

    CAS  Google Scholar 

  19. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  20. Jelinek P et al (2002) Modifikovane alkalicke silikaty, anorganicka pojiva nove generace. Slevarenstvi 50:16–20

    CAS  Google Scholar 

  21. Baliński A (2000) Selected problems of molding sand technology with inorganic binders. The structure of hydrated sodium silicate and its effect on bonding of molding sands. Foundry Research Institute. (in Polish)

    Google Scholar 

  22. Izdebska Szanda I, Baliński A (2009) Effect of chemical modification hydrated sodium silicate the distribution and quantity of its nanostructures. Foundry Contemp Polit World 3:13–17

    Google Scholar 

  23. Jelinek P (2004) Pojivove soustavy slevarenskych formovacich Smeli. Chemie slevarenskych pojiv. P. Jelínek, Ostrava

    Google Scholar 

  24. Beno J, Jelinek P, Spirutova N (2015) Moulding mixtures. VŠB – Technical University of Ostrava

    Google Scholar 

  25. Cho GH, Li J, Kim EH, Jung YG (2015) Preparation of a ceramic core with high strength using an inorganic precursor and the gel-casting method. Surf Coat Technol 284:396–399

    Article  CAS  Google Scholar 

  26. Kim EH, Lee WR, Jung YG, Lee CS (2011) A new binder system for preparing high strength inorganic molds in precision casting. Mater Chem Phys 126:344–351

    Article  CAS  Google Scholar 

  27. Izak P, Ogłaza L, Mozgawa W, Mastalska-Popławska J, Stempkowska A (2018) Influence of the type of aqueous sodium silicate on the stabilization and rheology of kaolin clay suspensions. Spectrochim Acta A Mol Biomol Spectrosc 196:155–159

    Article  CAS  Google Scholar 

  28. Lucas S, Tognonvi MT, Gelet JL, Soro J, Rossignol S (2011) Interactions between silica sand and sodium silicate solution during consolidation process. J Non-Cryst Solids 357:1310–1318

    Article  CAS  Google Scholar 

  29. Bangi UKH, Parvathy Rao A, Hirashima H, Venkateswara Rao A (2009) Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids. J Sol-Gel Sci Technol 50:87–97

    Article  CAS  Google Scholar 

  30. Bernal SA, Provis JL, Rose V, Mejía De Gutierrez R (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos 33:46–54

    Article  CAS  Google Scholar 

  31. Myers RJ, Bernal SA, Provis JL (2017) Phase diagrams for alkali-activated slag binders. Cem Concr Res 95:30–38

    Article  CAS  Google Scholar 

  32. Kermani M, Hassani FP, Aflaki E, Benzaazoua M, Nokken M (2015) Evaluation of the effect of sodium silicate addition to mine backfill, Gelfill – part 1. J Rock Mech Geotech Eng 7:266–272

    Article  Google Scholar 

  33. Stachowicz M, Granat K (2015) Influence of melt temperature on strength parameters of cyclically activated used-up sandmixes containing water-glass, hardened with microwaves. Arch Civ Mech Eng 15:831–835

    Article  Google Scholar 

  34. Viktor S, Galyna K (2017) Effect of water glass on early hardening of Portland cement. Procedia Eng 172:977–981

    Article  CAS  Google Scholar 

  35. Jelinek P, Polzin H, Sukta R (2004) Utilization of physical dehydration for hardening of cores bonded with colloidal solutions of alkaline silicates. Acta Matall Slovaca 10:29–32

    Google Scholar 

  36. Plenko T (1989) Environment right for silicates rediscovery. Mod Cast 18:23–26

    Google Scholar 

  37. Brown J (2000) Foseco ferrous foundryman’s handbook, 11th edn. Foseco International, Woburn

    Google Scholar 

  38. Lipowska B, Jedynak L (2010) Fluorine-free coagulant of silicate based, acid-resistant, refractory putties. Pr Inst Ceram I Mater Bud 5:81–91. (in Polish)

    Google Scholar 

  39. Houwink R, Salomon G (1965) Adhesion and adhesives. Amsterdam/London/New York, Elsevier

    Google Scholar 

  40. Campbell J (2011) Complete casting handbook, 1st edn. Elsevier, UK

    Google Scholar 

  41. Information Materials from ASK Chemicals (n.d.) https://www.ask-chemicals.com/home.htm. Accessed 16 Aug 2019

  42. Müller J, Stötzel R (2008) New innovative solutions for foundries by inorganic concepts. 68th WFC–World Foundry Congress, Chennai, India

    Google Scholar 

  43. Czerwiński K, Kasprzak M (2015) Application of cores and binders in metalcasting. Int J Cast Met Res 28:129–139

    Article  CAS  Google Scholar 

  44. Gröning PM, Strunk D (2011) The cold box process – a bridging\technology. (Hüttenes-Albertus Chemische Werke GmbH, Düsseldorf). Cast Plant Technol 1:14–17

    Google Scholar 

  45. Lochte K, Bochm R (2006) Properties and experience of an inorganic binder. Foundry Trade J 180:28–30

    Google Scholar 

  46. Steinhauser T, Wolff A (2007) AWB – Une technologie de noyautage respectueuse de l’environnement. Homes Fonderie 377:11–15

    Google Scholar 

  47. Armbruster S, Dodd S (1993) New inorganic core and mold sand binder system. AFS Trans 100:853–856

    Google Scholar 

  48. Schrey A (2007) SOLOSIL TX – a new inorganic binder system. A new environment friendly binder system for core making. Foundry Pract 263:15–23

    Google Scholar 

  49. Kmita A (2014) Modification of water glass, the moulding sands binder, by nanoparticles of metal oxides in organic solvents. PhD Thesis, AGH University of Science and Technology, Cracow, Poland. (in Polish)

    Google Scholar 

  50. Kukui D (1990) New directions of development of molding sands with water glass and wet electrolytic regeneration methods. Foundry J Polish Foundrymen’s Assoc 6:195–200

    Google Scholar 

  51. Wang J, Fan Z, Wang H (2007) An improved sodium silicate binder modified by ultra-fine powder materials. China Foundry 4:26–30

    Google Scholar 

  52. Fan ZT, Huang NY, Dong XP (2004) In house reuse and reclamation of used foundry sands with sodium silicate binder. Int J Cast Met Res 17:51–56

    Article  CAS  Google Scholar 

  53. Kmita A, Hutera B (2013) Water glass modification and its impact on the mechanical properties of moulding sands. Arch Foundry Eng 13:81–84

    Article  Google Scholar 

  54. Kmita A, Roczniak A (2017) Nanocomposites based on water glass matrix as a foundry binder: chosen physicochemical properties. Arch Foundry Eng 17:93–98

    Article  CAS  Google Scholar 

  55. Kmita A, Drożyński D, Roczniak A, Gajewska M, Marciszko M, Górecki K et al (2018) Adhesive hybrid nanocomposites for potential applications in moulding sands technology. Compos Part B Eng 146:124–131

    Article  CAS  Google Scholar 

  56. Bobrowski A, Kmita A, Starowicz M, Stypuła B, Hutera B (2012) Effect of magnesium oxide nanoparticles on water glass structure. Arch Foundry Eng 12:9–12

    Article  CAS  Google Scholar 

  57. Smyksy K, Kmita A, Hutera B, Drozyński D, Stypuł AB, Hajos M et al (2014) Cohesion and adhesion properties of modified water glass with colloidal solutions of ZnO. Metalurgija 53:459–462

    CAS  Google Scholar 

  58. Kmita A, Pribulova A, Holtzer M, Futas P, Roczniak A (2016) Use of specific properties of zinc ferrite in innovative technologies. Arch Metall Mater 61:2141–2146

    Article  CAS  Google Scholar 

  59. Kmita A, Żukrowski J, Hodor K, Smogór H, Sikora M (2017) Zinc ferrite nanoparticles as perspective functional for applications in casting technologies. Metalurgija 56:29–32

    CAS  Google Scholar 

  60. Holtzer M, Dańko R, Górny M, Kmita A (2015) The mold/casting interface phenomena and their influence on the surface quality of casting. Cracow University of Technology Publisher, Kraków, pp 19–36

    Google Scholar 

  61. Hunter B (2001) Reference document on best available techniques in the ferrous metals processing industry. Integr Pollut Prev Control 1:23

    Google Scholar 

  62. Kmita A, Benko A, Roczniak A, Frączek-Szczypta A, Holtzer M (2018) Pyrolysis of organic ester cured alkaline phenolic resin: identification of products. J Anal Appl Pyrolysis 129:6–12

    Article  CAS  Google Scholar 

  63. Kmita A, Fischer C, Hodor K, Holtzer M, Roczniak A (2018) Thermal decomposition of foundry resins: a determination of organic products by thermogravimetry–gas chromatography–mass spectrometry (TG–GC–MS). Arab J Chem 11:380–387

    Article  CAS  Google Scholar 

  64. Umezurike C, Onche WO (2010) Experimental analysis of porosity in gray iron castings. Glob J Res Eng 10:1–5

    Google Scholar 

  65. Kaneko H, Kodama T, Gokon N, Tamaura Y, Lovegrove K, Luzzi A (2004) Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation. Sol Energy 76:317–322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was supported by the National Science Centre, Poland (Grant Number 2016/23/D/ST8/00013).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holtzer, M., Kmita, A. (2020). Sodium Silicate Molding Sands. In: Mold and Core Sands in Metalcasting: Chemistry and Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-53210-9_9

Download citation

Publish with us

Policies and ethics