Skip to main content

Influence of the Technology of Molding and Core Sands on the Environment and Working Conditions: Summary

  • Chapter
  • First Online:
Mold and Core Sands in Metalcasting: Chemistry and Ecology

Abstract

A majority of contaminations generated in the casting production is related to molding and core sands: preparation of sands, producing of molds and cores, mold pouring with molten metals, mold cooling and knocking out, and reclamation of spent molding sands. Dangerous chemical substances depend on molding sands composition, liquid metal temperature, and the atmosphere in molds. Several evolving substances have carcinogenic or mutagenic influence (PAHs, BTEX), being hazardous for employees. At the economical utilization of spent molding sands, the attention should be drawn to the possibility of elution of dangerous substances from these sands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IARC (1984) IARC monographs on the evoluation of the carcinogenic risk of chemicals to humans. Ed. World, Lyon

    Google Scholar 

  2. Zhou J (2015) Status and development trend of Chinese molding materials. In: WFO international forum on moulding materials and casting technologies, Changsha, pp 110–117

    Google Scholar 

  3. Naik TR, Kraus RN, Chun Y, Ramme BW, Singh SS (2003) Properties of field manufactured cast-concrete products utilizing recycled materials. J Mater Civ Eng 15(4):400–407

    Article  CAS  Google Scholar 

  4. Pereiraa FR, Nunes FA, Segadães AM, Labrincha JA (2004) Refractory mortars made of different spents and natural sub-products. Key Eng Mater 264–268:1743–1747

    Article  Google Scholar 

  5. Alonso-Santurde R, Andrés A, Viguri JR, Raimondo M, Guarini G, Zanelli C et al (2011) Technological behaviour and recycling potential of spent foundry sands in clay bricks. J Environ Manag 92:994–1002

    Article  CAS  Google Scholar 

  6. Dańko J, Holtzer M, Małolepszy J, Pytel Z, Dańko R, Gawlicki M et al (2010) Methods of limitation of waste from foundry processes and methods of their management. Akapit, Cracow

    Google Scholar 

  7. US EPA Office of Resource Conservation and Recovery Economics and Risk Assessment Staff. Risk assessment of spent foundry sands in soil-related applications

    Google Scholar 

  8. Partridge BK, Fox PJ, Alleman JE, Mast DG (1999) Field demonstration of highway embankment construction using waste foundry sand. Transp Res Rec 1670:98–105

    Article  Google Scholar 

  9. Deng A, Tikalsky PJ (2008) Geotechnical and leaching properties of flowable fill incorporating waste foundry sand. Waste Manag 28:2161–2170. https://doi.org/10.1016/j.wasman.2007.09.018

    Article  CAS  Google Scholar 

  10. Mohamadi AE (2012) South Africa foundry market. Bricks forum, 2nd edn. Beijing National Foundry Technology Network

    Google Scholar 

  11. Dungan RS, Kukier U, Lee B (2006) Blending foundry sands with soil: effect on dehydrogenase activity. Sci Total Environ 357:221–230. https://doi.org/10.1016/j.scitotenv.2005.04.032

    Article  CAS  Google Scholar 

  12. Bhardwaj B, Kumar P (2017) Waste foundry sand in concrete: a review. Constr Build Mater 156:661–674

    Article  CAS  Google Scholar 

  13. Lee T, Park JW, Lee JH (2004) Waste green sands as reactive media for the removal of zinc from water. Chemosphere 56:571–581

    Article  CAS  Google Scholar 

  14. Dańko J, Dańko R, Łucarz M (2007) Processes and devices for reclamation of used molding sands. Akapit, Cracow

    Google Scholar 

  15. Joseph M, Banganayi F, Oyombo D (2017) Molding sand recycling and reuse in small foundries. In: International conference on sustainable materials processing and manufacturing (SMPM), pp 23–25

    Google Scholar 

  16. Dańko R, Dańko J, Holtzer M (2003) Reclamation of used sands in foundry production. Meta 42:173–177

    Google Scholar 

  17. Kmita A, Drożyński D, Roczniak A, Gajewska M, Marciszko M, Górecki K et al (2018) Adhesive hybrid nanocomposites for potential applications in molding sands technology. Compos Part B Eng 146:124–131

    Article  CAS  Google Scholar 

  18. Eglin D, Coradin T, Guille G, Helary C, Livage J (2005) Collagen–silica hybrid materials: sodium silicate and sodium chloride effects on type I collagen fibrillogenesis. In: International conference on new biomedical materials, Cardiff, Wales, pp 5–8

    Google Scholar 

  19. Sarker B, Lyer S, Arkudas A, Boccaccini AR (2013) Collagen/silica nanocomposites and hybrids for bone tissue engineering. Nanotechnol Rev 2:427–447

    Article  CAS  Google Scholar 

  20. EPA U (1992) Toxicity characteristic leaching procedure, method 1311. SW846

    Google Scholar 

  21. Ji S, Wan L, Fan Z (2001) The toxic compounds and leaching characteristics of spent foundry sands. Water Air Soil Pollut 132:347–364

    Article  CAS  Google Scholar 

  22. Dungan RS, Huwe J, Chaney RL (2009) Concentrations of PCDD/PCDFs and PCBs in spent foundry sands. Chemosphere 75:1232–1235

    Article  CAS  Google Scholar 

  23. Dungan RS (2006) Polycyclic aromatic hydrocarbons and phenolics in ferrous and non-ferrous waste foundry sands. J Resid Sci Technol 3:203–209

    CAS  Google Scholar 

  24. Alves BSQ, Dungan RS, Carnin RLP, Galvez R, de Carvalho Pinto CRS (2014) Metals in waste foundry sands and an evaluation of their leaching and transport to groundwater. Water Air Soil Pollut 225:1963

    Article  Google Scholar 

  25. Brandke HJ, Klein T (1977) Deponieverhalten und verwertung von giessereisanden. Teil I-III, Institut fur gewerbliche wassserwirtschaft und luftreinhaltung e.V

    Google Scholar 

  26. Nyembwe JK, Mamookho EM, Madzivhandila T, Nyembwe KD (2015) Characterisation of South African waste foundry molding sand: metalic contaminents. In: Proceedings of the world congress on mechanical, chemical, and material engineering (MCM), Barcelona, pp 360–362

    Google Scholar 

  27. Miguel RE, Ippolito JA, Leytem AB, Porta AA, Banda Noriega RB, Dungan RS (2012) Analysis of total metals in waste molding and core sands from ferrous and non-ferrous foundries. J Environ Manag 110:77–81

    Article  CAS  Google Scholar 

  28. Holtzer M, Dańko R, Kmita A (2016) Influence of a reclaimed sand addition to molding sand with furan resin on its impact on the environment. Water Air Soil Pollut 227:1–12

    Article  CAS  Google Scholar 

  29. Dańko R (2013) Criteria for an advanced assessment of quality of molding sands with organic binders and reclamation process products. China Founrdy 10:181–186

    Google Scholar 

  30. Jezierski J, Janerka K (2011) Selected aspects of metallurgical and foundry furnace dust utilization. Pol J Environ Stud 20:101–105

    CAS  Google Scholar 

  31. Holtzer M, Dańko R, Dańko J, Pytel Z (2015) Utilisation of products of the thermal reclamation of post reclamation dusts in the production technology of ceramic building materials. Arch Foundry Eng 15:33–36. https://doi.org/10.1515/afe-2015-0075

    Article  Google Scholar 

  32. Dańko R, Holtzer M, Dańko J (2015) Investigations of physicochemical properties and thermal utilisation of dusts generated in the mechanical reclamation process of spent molding sands. Arch Metall Mater 60:313–318

    Article  Google Scholar 

  33. Dańko J, Holtzer M, Dańko R, Hodana M, Śliwa M, Kubica R, et al (2017) System of devices for thermal utilization of dust from mechanical reclamation of foundry sands with organic binder. PL 227878 B1

    Google Scholar 

  34. Dańko R, Jezierski J, Holtzer M (2016) Physical and chemical characteristics of after-reclamation dust from used sand molds. Arab J Geosci 9:1–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holtzer, M., Kmita, A. (2020). Influence of the Technology of Molding and Core Sands on the Environment and Working Conditions: Summary. In: Mold and Core Sands in Metalcasting: Chemistry and Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-53210-9_14

Download citation

Publish with us

Policies and ethics