Skip to main content

Alternative Methods Using in Mold and Core Technologies

  • Chapter
  • First Online:
Mold and Core Sands in Metalcasting: Chemistry and Ecology
  • 421 Accesses

Abstract

Technologies of producing molds and cores used for producing castings of special alloys, of complicated shapes and high functional properties, are described. Castings manufactured in these processes, mainly for the cosmic, aircraft, automotive, and armament industry, are of the highest quality. The Rapid Prototyping (RP) process deserves a special attention. The base of the whole process is the digital 3D model made in the CAD environment. The RP is the additive method, which means it is based on a gradual placement of a material, layer after layer. This process is very efficient in small series and in piece production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Expanded polystyrene (EPS), i.e., foamed polystyrene, is obtained by foaming of polystyrene granules. Polystyrene is a polymer obtained in the polymerization process of styrene, originated from refining of crude oil or from catalytic dehydrogenation of ethylbenzene (Fig. 13.1).

  2. 2.

    Methyl methacrylate (MMA) is used for a production of methyl polymethacrylate (PMMA), one of the widely applied plastics, the so-called organic glass, known as Plexiglas. It is also applied in a production of emulsions for paints and lacquers, cosmetics, and acrylic resins (Fig. 13.2).

  3. 3.

    However, SF6 is a strong greenhouse gas contributing the climate warming and therefore its application is limited in several countries. Other protective gases for the melting magnesium alloys are looked for, e.g., Freon. HFC-134a.

References

  1. Lewandowski JL (1997) Materials for foundry moulds. AKAPIT, Cracow. (in Polish)

    Google Scholar 

  2. Sobczak J (ed) (2013) Founder’s guide. Technical Association of Polish Foundrymen, Cracow. (in Polish)

    Google Scholar 

  3. Sonnenberg F (2003) Recent innovations with EPS lost foam beads. AFS Trans 111:1213–1229

    CAS  Google Scholar 

  4. Pielichowski J, Sobczak J, Żółkiewicz Z, Hebda E, Karwiński A (2011) The thermal analysis of polystyrene foundry model. Trans Foundry Res Inst 1:15–21. (in Polish)

    Google Scholar 

  5. Karwiński A, Haratym R, Biernacki R (2009) Evaluation of the lost foam process in terms of casting dimensional accuracy and ecology. Arch Foundry Eng 9:249–253

    Google Scholar 

  6. Krauze M, Trzeszczyński J, Dzięcioł M (2003) The influence of temperature and the kind of the atmosphere on polystyrene thermal degradation. Polimery 43:701–708

    Article  Google Scholar 

  7. Sokołowski J, Rokicki G, Marczewski M, Szewczyk K (2008) Thermal-catalytic recycling of polyolefins and polystyrene. Czas Tech Wydaw Politech Krak R. 105:311–321

    Google Scholar 

  8. Sokołowski J, Rokicki G, Marczewski M, Szewczyk K (2008) Thermal-catalytic recycling of polyolefins and polystyrene. Czas Tech Wydaw Politech Krak R. 105:311–321

    Google Scholar 

  9. Shapi M (1990) Thermal decomposition of polystyrene: volatile compounds from large-scale pyrolysis. J Anal Appl Pyrolysis 18:143–149

    Article  CAS  Google Scholar 

  10. Żmudzińska M, Faber J, Perszewska K, Żółkiewicz Z, Maniowski Z (2011) Studying the emission of products formed during evaporation of polystyrene patterns in the lost foam process in terms of the work environment. Trans Foundry Res Inst LI:23–33. (in Polish)

    Google Scholar 

  11. Sokołowski J, Marczewski M, Rokicki G (2009) Thermal-catalytic recycling of polyolefins and polystyrene. (in Polish)

    Google Scholar 

  12. Liu J, Ramsay CW, Askeland DR (1997) A study of the foam-metal coating interaction in the lost foam casting process. AFS Trans 105:419–425

    CAS  Google Scholar 

  13. Goria CA, Serramoglia G, Caironi G, Tosi G (1986) Coating permeability: a critical parameter of the evaporative pattern process. AFS Trans 101:589–600

    Google Scholar 

  14. Green JJ, Ramsay CW, Askeland DR (1998) Formation of surface defects in gray iron lost foam castings. AFS Trans 106:339–347

    CAS  Google Scholar 

  15. Davies PJ, Griffiths WD (2006) Wicking of liquid polystyrene degradation products into the pattern coating in the post foam casting process. Proceedings of 67th World Foundry Congress, Harrogate, UK

    Google Scholar 

  16. Maruyama T, Nakamura G, Tamaki M, Nakamura K (2016) Effect of coating thickness on melt filling rate of cast iron in evaporative pattern casting process. Proceedings of 72nd World Foundry Congress, Nagoya, Japan

    Google Scholar 

  17. Hill M, Vrieze AE, Moody TL, Ramsay CW, Askeland DR (1998) Effect of metal velocity on defect formation in Al LFCs. AFS Trans 106:365–374

    CAS  Google Scholar 

  18. Warner MH, Miller BA, Littleton HE (1998) Pattern pyrolysis defect reduction in lost foam casting. AFS Trans 161:777–785

    Google Scholar 

  19. Gupta S, Richards VL, Singh A (2008) Lost foam casting of steel: carbon pick-up and horizontal flow fronts. AFS Trans 116:971–992

    CAS  Google Scholar 

  20. Goovaerts L, Veys Y, Meulcpas P, Vercaemst P, Dijkmans R (2001) Beste beschikbare technicen voor de gieterijen. Vito, Netherlands

    Google Scholar 

  21. European Commission (2005) Integrated pollution prevention and control reference document on best available techniques in the Smitheries and Foundries Industry

    Google Scholar 

  22. Davies PJ, Griffiths WD (2007) Wicking of liquid polystyrene degradation products into the pattern coating in the lost foam casting process. Foundry Trade J 180:62–65

    Google Scholar 

  23. Sun W, Littleton HE (2004) Process control of metal penetration defect in lost foam castings. AFS Trans 112:1087–1095

    CAS  Google Scholar 

  24. European Commission (1997) Best available techniques for the abatement of atmospheric pollution in the ferrous foundry industry

    Google Scholar 

  25. (1997) Advanced lost foam casting technology. Report to the Department of Energy, American Foundrymen’ S Society, and AFS-DOE-EPC Consortium Member Companies, USA

    Google Scholar 

  26. Kilic O, Acar S, Kisasoz A, Guler KA (2018) Investigation of carbon contamination in lost foam castings of low carbon steel. China Foundry 15:384–389

    Article  Google Scholar 

  27. Spillner A (1997) Vermeidung von kernsanden und aminabfällen durch den einsatz des lost-foam-verfahrens im leichtmetall-serienguß. Abfallberatungsagentur (ABAG), Fellbach

    Google Scholar 

  28. Ismael MR, dos Anjos RD, Salomao R, Pandolfelli VC (2006) Colloidal silica as a nostructured binder for refractory castables. Refract Appl News 11:16–20

    CAS  Google Scholar 

  29. Karwiński A (1997) The influence of the colloid silica content on the properties of liquid ceramic slurry used in investment casting. Solidif Met Alloy 31:89–96

    Google Scholar 

  30. Jing Y, Dehong L, Zhao W, Yehua J (2015) Process condition effects on gelatination kinetics in a silica sol ceramic mold. Int J Met 9:33–38

    Google Scholar 

  31. Zeng M, Yuan XQ, Shen BL, Chen ZZ (2007) Application to vacuum drying in prepare process of silica sol ceramic mold. Foundry 56:236–238

    CAS  Google Scholar 

  32. Haratym R, Biernacki R, Myszka D (2008) Ecological production of castings in ceramic molds. Warsaw University of Technology Publishing House, Warsaw. (in Polish)

    Google Scholar 

  33. Pattnaik S, Karunakar DB, Jha PK (2012) Developments in investment casting process – a review. J Mater Process Technol 212:2332–2348

    Article  CAS  Google Scholar 

  34. Jiang W, Fan Z, Liao D, Dong X, Zhao Z (2010) A new shell casting process based on expendable pattern with vacuum and low-pressure casting for aluminum and magnesium alloys. Int J Adv Manuf Technol 51:25–34

    Article  Google Scholar 

  35. Karwiński A (1999) Ecosil – water-based binder for investment casting. Bull Foundry Res Inst 5:3–15. (in Polish)

    Google Scholar 

  36. (2003) Castings Technology International. RepliCast®, Cti, UK

    Google Scholar 

  37. Rezavand SAM, Behravesh AH (2007) An experimental investigation on dimensional stability of injected wax patterns of gas turbine blades. J Mater Process Technol 182:580–587

    Article  Google Scholar 

  38. Jafari H, Idris MH, Ourdjini A (2013) A review of ceramic shell investment casting of magnesium alloys and mold-metal reaction suppression. Mater Manuf Process 28:843–856

    Article  CAS  Google Scholar 

  39. Lyon P, Thompson P, Rowett A (2005) Precision casting of magnesium. A lightweight solution. 53rd Technical Conference and Expo, Dearborn, MI, pp 1–11

    Google Scholar 

  40. Adamczyk Z, Jaszczółt K, Karwiński A, Jachimska B (2008) Physicochemical characteristics of binders and liquid slurries used for investment casting of reactive metals. Foundry Research Institute, Cracow

    Google Scholar 

  41. Stefanescu DM (2008) ASM handbook. Casting, 15, 9th edn. ASM International, Materials Park

    Google Scholar 

  42. Mahimkar C, Richards VL, Lekakh SN (2011) Metal-ceramic shell interactions during investment casting. AFS Trans 119:319–329

    CAS  Google Scholar 

  43. Kim SK, Youn JI, Kim YJ (2000) Rotating cylinder manufacturing method and investment casting of SiC/AZ91HP magnesium composites. Mater Sci Technol 16:769–775

    Article  CAS  Google Scholar 

  44. Yang GY, Jie WQ, Hao QT, Li JH (2007) Study on process of magnesium alloy investment casting. Mater Sci Forum 561–565:1019–1022

    Article  Google Scholar 

  45. Singh R, Singh S, Hashmi MSJ (2016) Investment casting. Reference module in materials science and materials engineering. Elsevier, Oxford

    Google Scholar 

  46. Tascioglu S, Akar N (2000) Conversion of an investment casting sprue wax to a pattern wax by chemical agents. Mater Manuf Process 18:753–768

    Article  CAS  Google Scholar 

  47. Lee S, Kim YJ (2016) Evaluation of the α-case with titania mold for titanium investment casting. Proceedings of 72nd World Foundry Congress, Nagoya, Japan

    Google Scholar 

  48. Mantani Y, Okuda E (2016) Casting solidification structure of titanium and titanium alloys using oxide cements mold. Proceedings of 72nd World Foundry Congress, Nagoya, Japan

    Google Scholar 

  49. Sun L, Dube S, Tremblay R (2006) Interfacial reactions between AZ91D magnesium alloy and plaster mould material during investment casting. Mater Sci Technol 22:1456–1463

    Article  CAS  Google Scholar 

  50. Lind C, Krumrei T (2016) New face coat material for investment casting moulds. INCAST, pp 24–25

    Google Scholar 

  51. Holtzer M, Dańko R, Żymankowska-Kumon S, Kamińska J (2009) Assessment of the possibility of utilisation of used ceramic moulds originated from the investment casting technology. Arch Foundry Eng 9:159–164

    CAS  Google Scholar 

  52. Holtzer M, Zych J, Dańko R, Bobrowski A (2010) Reclamation of material from used ceramic moulds applied in the investment casting technology. Arch Foundry Eng 10:199–204

    CAS  Google Scholar 

  53. Hoppenstedt (2002) Guss Produkte Jahreshandbuch, Giessereien – Zulieferer – Ausstatter

    Google Scholar 

  54. Brown J (2000) Foseco ferrous founndryman’s handbook, 11th edn. Foseco International, Woburn

    Google Scholar 

  55. Moore C, Beat D (1979) Effset metallurgy, sand technology and economics. Foundry Trade J 146:1049–1063

    Google Scholar 

  56. Campbell J (2011) Complete casting handbook, 1st edn. Elsevier, Oxford

    Google Scholar 

  57. Kita K, Nino H, Tominaga M (1980) Characteristics of frozen mold. IMONO 52:28–33

    CAS  Google Scholar 

  58. Baliński A, Holtzer M (1982) Structural and mechanical properties of gray iron cast in frozen molds. Trans Foundry Res Inst 32(1):24–34

    Google Scholar 

  59. Omura N, Tada S (2012) Effects of water content of frozen mold on fluidity of aluminum alloy, in light metals. John Wiley & Sons, Hoboken

    Google Scholar 

  60. Tada S, Omura N, Murakami Y (2014) Environmental – friendly sand casting technique using frozen mold. Proceedings of 71st World Foundry Congress, Bilbao, Hiszpania

    Google Scholar 

  61. Tada S, Nishio T, Koayaski K (2008) Effect of colloidal silica additions on compressive strength of frozen mould. Int J Cast Met Res 21:260–264

    Article  CAS  Google Scholar 

  62. Thiel J, Ravi S, Bryant N (2016) Advancements in materials for three dimensional printing of molds and cores. Proceedings of 72nd Word Foundry Congress, Nagoya, Japan

    Google Scholar 

  63. Upadhyay M, Sivarupan T, Mansori M (2017) 3D printing for rapid sand casting – a review. J Manuf Process 29:211–220

    Article  Google Scholar 

  64. Kang J, Wu M, Xian Q (2017) The role and impact of 3D printing technologies in casting. China Foundry 14:157–167

    Article  Google Scholar 

  65. Wen S, Shen Q, Wei Q, Yan C (2015) Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. J Mater Process Technol 225:93–102

    Article  CAS  Google Scholar 

  66. Seals ME, McKinney SR, Stockhausen PJ, Bottoms SR, Druschitz AP (2014) Evaluation of 3D printed polymers for investment casting expendable patterns. AFS Trans 122:145–159

    Google Scholar 

  67. Sivarupan T, Upadhyay M, Ali Y, ElMonsori M, Dargusch M (2019) Reduced consumption of materials and hazardous chemicals for energy efficient production of metal parts through 3D printing of sand molds. J Clean Prod 224:4111–4420

    Article  CAS  Google Scholar 

  68. Snelling D, Li Q, Meisel N, Williams C, Batara R, Druschitz A (2015) Lightweight metal cellular structures fabricated via 3D printing of sand cast moulds. Adv Eng Mater 17:923–932

    Article  CAS  Google Scholar 

  69. Druschitz A, Williams C, Snelling D (2014) Additive manufacturing supports the production of complex castings. TMS Annual Meeting, pp 51–57

    Google Scholar 

  70. Mitra S, Castro AR (2019) On the rapid manufacturing process of functional 3D printed sand molds. J Manuf Process 42:201–212

    Article  Google Scholar 

  71. Zhou X, Yang J, Gao Q (2001) Study on heat hardening mechanism of starch composite binder for sand mold (core) by IR spectra. J Mater Sci Technol 17:143–146

    Google Scholar 

  72. Zhou X, Yang J, Gao Q (2009) The high temperature resistant mechanism of α-starch binder for foundry. J Mater Process Technol 209:5394–5398

    Article  CAS  Google Scholar 

  73. Zhou X, Zhou J, Qu G (2005) Higroscopicity – resistant mechanism of an α-starch based composite binder for dry sand molds and cores. China Foundry 2:97–101

    CAS  Google Scholar 

  74. Zhou X, Yang J, Qu G (2007) Study on syntheses and properties of modified starch binder foundry. J Mater Process Technol 183:407–411

    Article  CAS  Google Scholar 

  75. Czerwinski F, Mir M, Kasprzak W (2015) Application of cores and binders in metalcasting. Int J Cast Met Res 28:129–139

    Article  CAS  Google Scholar 

  76. Pielichowski K, Njuguna J (2005) Thermal degradation of polymeric materials. Smithers Rapra Press, Shawbury

    Google Scholar 

  77. Shuttleworth PS, Budarin V, White RJ, Gun’ko VM, Luque R, Clark JH (2013) Molecural-level understanding of the carbonization of polysaccharides. Chemistry 19:9351–9357

    Article  CAS  Google Scholar 

  78. Grabowska B, Holtzer M, Dańko R, Górny M, Bobrowski A, Olejnik E (2013) New BioCo binders containing biopolymers for foundry industry. Metallurgija 51:47–50

    Google Scholar 

  79. Yujue W, Cannon FS, Salama M, Goudzwaard J, Furness JC (2007) Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environ Sci Technol 41:7922–7927

    Article  CAS  Google Scholar 

  80. Allen J, Cannon F, Nieto-Delgado C, Voigt RC, Fox J, Lemonski J et al (2016) Full-scale air emissions monitoring and casting quality demonstration of a hybrid hydrolyzed collagen-alkali silicate core binder. Int J Met 10:172–189

    CAS  Google Scholar 

  81. Palfi VK, Perczel A (2007) How stable is a collagen triple helix? An ab initio study on various collagen and b-sheet forming sequences. J Comput Chem 29(9):67–72

    Google Scholar 

  82. Fox JT, Allen JF, Fox T, De Venne JA, Furness JC, Lamonski JS et al (2015) Full-scale demonstration of a hybrid hydrolyzed collagen-alkali silicate core binder. Int J Met 9:51–61

    CAS  Google Scholar 

  83. Wang Y, Cannon F, Salama M, Goudzaard J, Furness J (2007) Characterization of hydrocarbon emissions from green sand foundry core binders by analitycal pyrolysis. Environ Sci Technol 22:7922–7927

    Article  CAS  Google Scholar 

  84. Kumar R, Abhishek MK, Fuller A, Bosco G, Rego JV (2017) Study on mechanical properties of bio based and inorganic binders for the preparation of core in metal casting. Energy Power 7:136–141

    Google Scholar 

  85. Allen JF (2014) Sodium silicate and hydrolyzed collagen as a hybrid core binder for pollution prevention in foundries. The Pensylvania State University, University Park

    Google Scholar 

  86. Kato Y, Zenpo T, Asano N (2005) New core binder system for aluminum casting based on polysaccharide. AFS Trans 113:327–332

    CAS  Google Scholar 

  87. Aoki T, Kato Y, Zenpo T, Asanao N (2014) New core binder system for aluminum casting based on polysaccharide. Proceedings of 71st World Foundry Congress (WFC 2014), Bilbao, Spain

    Google Scholar 

  88. Makino H, Kato Y, Zenpo T, Asano N (2005) Molding sumulation and experiment of new coremaking system with polysaccharide-based binder. AFS Trans 113:333–340

    CAS  Google Scholar 

  89. Ramrattan S, Patel P, Shah R, Aoki T, Kato Y, Makino H (2016) Evaluating a high production eco-friendly core binder system for aluminum. Proceedings of 72nd World Foundry Congress, Nagoya, Japan

    Google Scholar 

  90. American Society for Metals (ASM) (2008) Metals handbook, vol. 15: Casting. ASM International, Metals Park

    Google Scholar 

  91. Iyer R, Ramrattan S, Lannutti J, Li W (2001) Thermo-mechanical properties of chemically bonded sands. AFS Trans 109:965–973

    CAS  Google Scholar 

  92. Żenkiewicz M, Richert J (2009) Synthesis, properties and applications of polylactide. Przetwórstwo Tworzyw 5:192–199. (in Polish)

    Google Scholar 

  93. Duda A, Penczek S (2003) Polylactide [poly(lactic acid)]: synthesis, properties and applications. Polimery 48:16–27. (in Polish)

    Article  CAS  Google Scholar 

  94. Kozłowski J, Kochański A, Perzyk M, Tryznowski M (2014) Application of PLA as a binder in molding and core sands. Arch Foundry Eng 14:51–54. (in Polish)

    Article  Google Scholar 

  95. Major-GabryÅ› K (2016) Environmentally friendly foundry moulding and core sands. Archives of Foundry Engineering Publisher, Katowice. (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holtzer, M., Kmita, A. (2020). Alternative Methods Using in Mold and Core Technologies. In: Mold and Core Sands in Metalcasting: Chemistry and Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-53210-9_13

Download citation

Publish with us

Policies and ethics