Skip to main content

Abstract

On account of their chemical character, molding sands with organic and inorganic binders can be singled out. The separate group constitute molding sands with bentonite (green sands) which – apart from a mineral matrix and bentonite – contain carbon substances, generating lustrous carbon. More and more often green sands are considered molding sands with inorganic binders. In the case of green sands, the basic problem constitutes the selection of additions generating lustrous carbon, which would be as low as possible harmful for humans and the environment and would allow the reclamation of bentonite from knocked out molding sands. More than 70% of iron castings are produced in green sands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The process is called “green sand” casting not because the sand is green but because the sand is moistened with water and clay, rather than oil. The term green sand means the presence of moisture in molding sand indicates that the mold is not baked or dried.

  2. 2.

    Montmorillonite, mineral from the silica group, is counted to argillaceous minerals (group of smectites). The name originates from the town Montmorillon in France.

  3. 3.

    Natural fuels are utilized in thermochemical transformation processes, to which belong:

    Burning  – thermochemical process performed in the oxygen presence; the basic products of the process are CO2 and H2O.

    Gassing  – process of total thermochemical transformation performed in the presence of oxygen or air with water vapor addition; a mixture of combustible gases, first of all, CO, H2, and hydrocarbons, as a potential fuel with a simultaneous decomposition of water vapor into oxygen and hydrogen, are formed. High oxygen concentration is created in the mold cavity.

    Pyrolysis  – thermochemical process performed without the oxygen access, in the result of which solid, liquid, and gaseous products are formed.

    Liquefaction  – process aimed at producing liquid fuels out of natural solid fuels.

References

  1. Polzin H (2012) Anorganische Binder. Fachverlag Schiele & Schön GmbH

    Google Scholar 

  2. Petrzela L (1947) CSR - Patent no. 81931, Water glass CO2 process. Czechoslovakia. (in Czech)

    Google Scholar 

  3. Howden JD (2014) Green sand “less is best” a more sustainable philosophy for change. Proceed. Mater. 71st World Foundry Congr., Bilbao, Spain pp 19–21

    Google Scholar 

  4. Campbell J (2011) Complete casting handbook, 1st edn. Elsevier Ltd, UK

    Google Scholar 

  5. Lewandowski JL (1997) Materials for foundry moulds. AKAPIT, Cracow. (in Polish)

    Google Scholar 

  6. Brown J (2000) Foseco Ferrous Foundryman’s handbook, 11th edn. Foseco International, Woburn

    Google Scholar 

  7. Grefhorst C, Bohnke S, Lafay V, Richardson N (2017) Bentonite modification to meet today’s molding requirements. 71 st World Foundry Congr., Bilbao, Spain pp 1037–1044

    Google Scholar 

  8. (2019) Information materials CETCO Poland company, Volclay sodium bentonite. http://www.cetco.pl. Accessed 16 Aug 2019 (in Polish)

  9. Grim RE (1968) Clay mineralogy, 2nd edn. McGraw-Hill, USA

    Google Scholar 

  10. Newman ACD (1987) Chemistry of clays and clay minerals. Mineralogical Society monographs, No. 6, Longman

    Google Scholar 

  11. Ubowska A (2010) Montmorillonite as a polyurethane foams flame retardant. Arch Combust 30:459–462

    CAS  Google Scholar 

  12. www.bentonites.net Accessed 16 Aug 2019

  13. Pusch R, Karnland O (1996) Physico/chemical stability of smectite clays. Eng Geol 41:73–85

    Article  Google Scholar 

  14. Clariant - Süd-Chemie company (2015) Information materials https://www.clariant.com/en/Company/History. Accessed 2 Jul 2018

  15. Mulligan CN, Fukue M, Sato Y (2010) Sediments contamination and sustainable remediation. Taylor & Francis Group, UK

    Google Scholar 

  16. European Commission (2005) Integrated pollution prevention and control reference document on best available techniques in the Smitheries and foundries industry

    Google Scholar 

  17. CAEF (1997) BAT for the abatement of atmospheric pollution in the Ferrous Foundry Industry, European Commission - DG XI.E.1

    Google Scholar 

  18. ETSU (n.d) Foundry green sand: use and reclamation (EG 5 guide). Energy Efficiency Office - Department of the Environment

    Google Scholar 

  19. Niederbudde E-A, Stanjek H, Emmerich K (2002) Handbuch der Bodenkunde. Hrsg.: Blume, H.-P. Ecomed Verlag, Landsberg

    Google Scholar 

  20. Mackenzie RC (1970) Differential thermal analysis. Academic Press, London/New York

    Google Scholar 

  21. Stoch L (1974) Clay minerals. Geological Publishing House, Warsaw. (in Polish)

    Google Scholar 

  22. LaFay VS, Neltner S, Carroll D, Couture DJ (2010) Know the environmental impact of your additives. Mod Cast 10:27–29

    Google Scholar 

  23. Grefhorst C, LaFay VS Future performance expectations for foundry bentonite. http://www.imerys-additivesformetallurgy.com/wp-content/uploads/Future-Performance-Expectations-for-Foundry-Bentonite_EN.pdf. Accessed 16 Aug 2019

  24. Richardson N (2010) Bentonite bonded moulding sand. Foundry Trade J 9:208–211

    Google Scholar 

  25. Holtzer M, Kwaśniewska-Królikowska D, Bobrowski A, Dańko R, Grabowska B, Zymankowska-Kumon S et al (2012) Investigations of a harmful components emission from moulding sands with bentonite and lustrous carbon carriers when in contact with liquid metals. (in Polish). Fuondry J Polish Foundrymen’s Assoc 3–4:124–132

    Google Scholar 

  26. Engelhardt T (2015) Last developments on low-emission additives for molding sand. Int. Forum Molding Mater. Cast. Technol., October 25-28 Changsha China

    Google Scholar 

  27. Holmquist SB (1960) Conversion of quartz to tridymite. J Am Ceram Soc 44:82–86

    Article  Google Scholar 

  28. Engelhardt T (2010) New concepts to reduce the emission from green sand systems. Giesserei - Rundschau 57:45–49

    CAS  Google Scholar 

  29. Zhou H, Onwudili J, Chunfei W, Meng A (2015) Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Manag 36:136–146

    Article  CAS  Google Scholar 

  30. Richardson N, LaFay VS (2014) Why iron castings need seacoal. Foundry Trade J 188:351−355

    Google Scholar 

  31. Dungan RS, Reeves J (2007) Pyrolysis of carbonaceous foundry sand additives: seacoal and gilsonite. Thermochim Acta 460:60–66

    Article  CAS  Google Scholar 

  32. Casting Emission Reduction Program (1999) Baseline testing emission results. Preproduction Foundry

    Google Scholar 

  33. Holtzer M, Zymankowska-Kumon S, Kubecki M, Kwaśniewska-Królikowska D (2013) Harmfulness assessment of resins used as lustrous carbon carriers in bentonite molding sands. Arch Metall Mater 58:817–822

    Article  CAS  Google Scholar 

  34. Holtzer M, Grabowska B, Zymankowska-Kumon S, Kwaśniewska-Królikowska D, Dańko R, Solarski W et al (2012) Harmfulness of molding sands with bentonite and lustrous carbon carriers. Meta 51:437–440

    CAS  Google Scholar 

  35. Crandell GR, Schifo J, Mosher G (2006) CERP organic HAP emission measurements for Iron foundries and their use in development of an AFS HAP guidance document. Trans Am Foundry Soc 114:1–17

    Google Scholar 

  36. Brown JR (1999) Foseco non-ferrous Foundryman’s handbook, 1st edn. Elsevier, UK

    Google Scholar 

  37. Grefhorst C, LaFay V, Richardson N, Podobeg O (2012) Challenges of introducing inorganic mold and core making processes. Cast Plant Technol 1:10–16

    Google Scholar 

  38. Jelínek P, Beňo J (2008) Morphological forms of carbon and their utilizations at formation of iron casting surfaces. Arch Foundry Eng 8:67–70

    Google Scholar 

  39. Goovaerts L, Veys Y, Meulcpas P, Vercaemst P, Dijkmans R (2001) Beste beschikbare technicen voor de gieterijen, Vito

    Google Scholar 

  40. Harabasz H, Holtzer M (2013) Water quality as one of the factors determining the properties of bentonite molding sands in iron foundry. Arch Foundry Eng 13:45–50

    Article  Google Scholar 

  41. Grefhorst C (2006) Prüfung von Bentoniten. Ausführliche Bewertung der Eigenschaften und ihr Wert für die Praxis. Giesserei Prax 93:36–31

    Google Scholar 

  42. Patterson B (1961) Die Bedeutung der Festigkeit feuchter, tongebundener Formsande, insbesondere der Nassfestigkeit. Giesserei Prax 7:25–29

    Google Scholar 

  43. Brown J (2000) Foceco ferrous Foundryman’s handbook, 11th edn. Elsevier, UK

    Google Scholar 

  44. Holtzer M, Kmita A, Dańko R (2015) The gases generation during thermal decomposition of moulding sands - comparison of inorganic and organic binders. Slévárenství 63:246–247

    Google Scholar 

  45. Špirutová N, Beòo J, Bednárová V (2013) Alternative utilization of the core sand for a green-sand system. Mater Technol 47:557–561

    Google Scholar 

  46. Baker G (2005) Fundamentals of green sand preparation. AFS Trans 113:341–344

    Google Scholar 

  47. Drews B (1996) Simultaneous mixing and cooling of moulding sand under vacuum. Cast Plant Technol Int 2:4–10

    Google Scholar 

  48. Yu W, He H, Cheng H, Gan B, Li X (2009) Preparation and experiments for a novel kind of foundry core binder made from modified potato starch. Mater Des 30:210–213

    Article  Google Scholar 

  49. Ashogbon A, Akintayo ET (2014) Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch 66:41–57

    Article  CAS  Google Scholar 

  50. Beno J, Jelinek P, Spirutova N, Miksovsky F (2011) Efficiency of additives of the polysaccharide type on physical properties of bentonite mixtures. Arch Foundry Eng 11:5–8

    CAS  Google Scholar 

  51. Engelhardt T (2016) Low-emission additives for bentonite-bonded moulding sands. J Polish Fuondrymen’s Assoc 5–6:220–223

    Google Scholar 

  52. Kwaśniewska-Królikowska D, Holtzer M (2013) Selection criteria of lustrous carbon carriers in the aspect of properties of green sand system. Meta 52:62–64

    Google Scholar 

  53. Wang Y, Cannon F, Komarneni S, Voigt R, Furness J (2005) Mechanism of advanced oxidation processing on bentonite consumption reduction in foundry. Environ Sci Technol 39:7712–7718

    Article  CAS  Google Scholar 

  54. Goudzward JE, Kurtti CM, Andrews JH, Cannon FS, Voigt RC, Firebaugh JE et al (2003) Foundry emissions effects with an advanced oxidation backwater system. AFS Trans 111:1191–1211

    Google Scholar 

  55. Baliński A (2010) Advanced oxidation and adsorption modification of dust waste from standard molding sands. Arch Foundry Eng 10:5–12

    Google Scholar 

  56. Głowacki CR, Crandell GR, Cannon FS, Voigt RC (2003) Emissions studies at a test foundry using an advanced oxidation -clear water system. AFS Trans 1111:579–598

    Google Scholar 

  57. Esplugas S, Gimenez J, Contreras S, Pascual E, Rrigues M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  58. Engelhardt T (2016) Formst off additiv system zur Reduktion der Emissionen. Gesserei 103:44–48

    Google Scholar 

  59. Engelhardt T (2010) Neue Konzepte zur Emissionsminderung aus bentonitgebundenen Formstoffen. Giesserei-Rundschau 57:45–49

    CAS  Google Scholar 

  60. Grefhorst C, Senden W, Ilman R, Podobed O, Lafay V, Tilch W (2010) Reduction of green sand emissions by minimum 25% case study. Proc. 69 th world foundry congr., Hangzhou China pp 0703-0709

    Google Scholar 

  61. Beno J, Jelinek P, Miksovsky F (2010) Ekologicky šetrná kompozitní bentonitom pojiva a jej ich prumeslová aplikace. Technology 2:5–10

    Google Scholar 

  62. Schifo J (2005) Know your HAPs. Mod Cast 87:33–35

    Google Scholar 

  63. Holtzer M, Dańko R (eds) (2013) The assessment of harmfulness of binding materials used for a new generation of core and molding sands. AKAPIT (in Polish)

    Google Scholar 

  64. Ji S, Wan L, Fan Z (2001) The toxic compounds and leaching characteristics of spent foundry sands. Water Air Soil Pollut 132:347–364

    Article  CAS  Google Scholar 

  65. Alves BSQ, Dungan RS, Carnin RLP, Galvez R, de Carvalho Pinto CRS (2014) Metals in waste foundry sands and an evaluation of their leaching and transport to groundwater. Water Air Soil Pollut 225:1963. https://doi.org/10.1007/s11270-014-1963-4

    Article  CAS  Google Scholar 

  66. Dungan RS (2006) Polycyclic aromatic hydrocarbons and phenolics in ferrous and non-ferrous waste foundry sands. J Residuals Sci Technol 3:203–209

    CAS  Google Scholar 

  67. Dungan RS, Huwe J, Chaney RL (2009) Concentrations of PCDD/PCDFs and PCBs in spent foundry sands. Chemosphere 75:1232–1235. https://doi.org/10.1016/j.chemosphere.2009.01.080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holtzer, M., Kmita, A. (2020). Green Sands. In: Mold and Core Sands in Metalcasting: Chemistry and Ecology . Springer, Cham. https://doi.org/10.1007/978-3-030-53210-9_10

Download citation

Publish with us

Policies and ethics