Skip to main content

Animal Based Surgical Training in Pineal Approaches

  • Chapter
  • First Online:
Pineal Neurosurgery

Abstract

The nonliving animal head model greatly simulates the standard neurosurgical procedures, and thus it is a useful, cost effective, and an easily applicable tool for developing and refining neurosurgical skills. Like any surgical specialty, neurosurgery requires the development of dexterity and skills for basic up to difficult techniques and procedures. In delicate organs such as the central nervous system, the neurosurgeon’s individual skills play a crucial role in preventing complications and determining patient outcome. Active measures for further development and refinement of nonliving animal-based models and programs are warranted for optimized residency outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaşargil MG. From the microsurgical laboratory to the operating theatre. Acta Neurochir. 2005;147(5):465–8.

    Article  Google Scholar 

  2. Dandy WE. An operation for the removal of pineal tumors. Surg Gynecol Obstet. 1921;33:113–9.

    Google Scholar 

  3. Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schneider E, Alini M. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord. 2011;12(1):271.

    Article  Google Scholar 

  4. Tricoire H, Malpaux B, Møller M. Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. J Comp Neurol. 2003;456(1):39–47.

    Article  Google Scholar 

  5. Güney M, Ayranci E, Kaplan S. Development and histology of the pineal gland in animals. Step by step experimental pinealectomy techniques in animals for researchers. New York: Nova Science Publishers; 2013. p. 33–52.

    Google Scholar 

  6. Dempsey RJ, Hopkins J, Bittman EL, Kindt GW. Total pinealectomy by an occipital parasagittal approach in sheep. Surg Neurol. 1982;18(5):377–80.

    Article  CAS  Google Scholar 

  7. Poppen JL. The right occipital approach to a pinealoma. J Neurosurg. 1966;25(6):706–10.

    Article  CAS  Google Scholar 

  8. Menovsky T. A human skull cast model for training of intracranial microneurosurgical skills. Microsurgery. 2000;20(7):311–3.

    Article  CAS  Google Scholar 

  9. Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, Kuhlen D, Schaller K. Residency program trainee-satisfaction correlate with results of the European board examination in neurosurgery. Acta Neurochir. 2016;158(10):1823–30.

    Article  Google Scholar 

  10. Stienen MN, Netuka D, Demetriades AK, Ringel F, Gautschi OP, Gempt J, Kuhlen D, Schaller K. Working time of neurosurgical residents in Europe—results of a multinational survey. Acta Neurochir. 2016;158(1):17–25.

    Article  Google Scholar 

  11. Suri A, Patra DP, Meena RK. Simulation in neurosurgery: past, present, and future. Neurol India. 2016;64(3):387.

    Article  Google Scholar 

  12. Rehder R, Abd-El-Barr M, Hooten K, Weinstock P, Madsen JR, Cohen AR. The role of simulation in neurosurgery. Childs Nerv Syst. 2016;32(1):43–54.

    Article  Google Scholar 

  13. Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training: a systematic review. J Neurosurg. 2014;121(2):228–46.

    Article  Google Scholar 

  14. Stienen MN, Schaller K, Cock H, Lisnic V, Regli L, Thomson S. eLearning resources to supplement postgraduate neurosurgery training. Acta Neurochir. 2017;159(2):325–37.

    Article  Google Scholar 

  15. Roitberg B, Banerjee P, Luciano C, Matulyauskas M, Rizzi S, Kania P, Gasco J. Sensory and motor skill testing in neurosurgery applicants: a pilot study using a virtual reality haptic neurosurgical simulator. Neurosurgery. 2013;73(suppl_1):S116–21.

    Article  Google Scholar 

  16. Hayashi S, Naito M, Kawata S, Qu N, Hatayama N, Hirai S, Itoh M. History and future of human cadaver preservation for surgical training: from formalin to saturated salt solution method. Anat Sci Int. 2016;91(1):1–7.

    Article  CAS  Google Scholar 

  17. Stein BM. The supracerebellar infratentorial approach to pineal lesions. J Neurosurg. 1971;35(2):197–202.

    Article  CAS  Google Scholar 

  18. Hicdonmez T, et al. Posterior fossa approach: microneurosurgical training model in cadaveric sheep. Turk Neurosurg. 2006;16(3):111–4.

    Google Scholar 

  19. Hicdonmez T, Hamamcioglu MK, Tiryaki M, Cukur Z, Cobanoglu S. Microneurosurgical training model in fresh cadaveric cow brain: a laboratory study simulating the approach to the circle of Willis. Surg Neurol. 2006;66(1):100–4.

    Article  Google Scholar 

  20. Regelsberger J, Heese O, Horn P, Kirsch M, Eicker S, Sabel M, Westphal M. Training microneurosurgery–four years experiences with an in vivo model. Central Eur Neurosurg Zentralblatt für Neurochirurgie. 2011;72(04):192–5.

    Article  CAS  Google Scholar 

  21. Aurich LA, Silva Junior LF, Monteiro FM, Ottoni AN, Jung GS, Ramina R. Microsurgical training model with nonliving swine head. Alternative for neurosurgical education. Acta Cir Bras. 2014;29(6):405–9.

    Article  Google Scholar 

  22. Silva LF, Aurich L, Monteiro F, Zambon L, Nogueira G, Ramina R. Microsurgical and endoscopic training model with nonliving swine head: new alternative for skull base education. J Neurolog Surg Part B. 2014;75(S01):A190.

    Google Scholar 

  23. Sindou M. Practical handbook of neurosurgery, vol. 2. 1st ed. Vienna: Springer; 2009. p. 286.

    Book  Google Scholar 

  24. Carey JN, Minneti M, Leland HA, Demetriades D, Talving P. Perfused fresh cadavers: method for application to surgical simulation. Am J Surg. 2015;210(1):179–87.

    Article  Google Scholar 

  25. Greenberg MS, Greenberg MS. Handbook of neurosurgery. 8th ed. Tampa: Greenberg Graphics; 2016. p. 663.

    Book  Google Scholar 

  26. Reiter RJ. The mammalian pineal gland: structure and function. Am J Anat. 1981;162(4):287–313.

    Article  CAS  Google Scholar 

  27. Yildiz D, Gultiken M, Bolat D. Arterial supply of the pineal gland of Akkaraman sheep. Acta Vet Hung. 2004;52(1):1–6.

    Article  CAS  Google Scholar 

  28. Grist EP. Transmissible spongiform encephalopathy risk assessment: the UK experience. Risk Anal Int J. 2005;25(3):519–32.

    Article  Google Scholar 

  29. Turan Suslu H, Ceylan D, Tatarlı N, Hıcdonmez T, Seker A, Bahrı Y, Kılıc T. Laboratory training in the retrosigmoid approach using cadaveric silicone injected cow brain. Br J Neurosurg. 2013;27(6):812–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samer S. Hoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoz, S.S. et al. (2020). Animal Based Surgical Training in Pineal Approaches. In: Hoz, S.S., et al. Pineal Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-030-53191-1_9

Download citation

Publish with us

Policies and ethics