Desai, A., Gulwani, S., Hingorani, V., Jain, N., Karkare, A., Marron, M., Roy, S.: Program synthesis using natural language. In: Proceedings of the 38th International Conference on Software Engineering, pp. 345–356. ACM, May 2016
Google Scholar
Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprintarXiv:1410.5401 (2014)
Joulin, A., Mikolov, T.: Inferring algorithmic patterns with stack-augmented recurrent nets. In: Advances in Neural Information Processing Systems, pp. 190–198 (2015)
Google Scholar
Quirk, C., Mooney, R., Galley, M.: Language to code: learning semantic parsers for if-this-then-that recipes. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 878–888 (2015)
Google Scholar
Jurafsky, D.: Speech and Language Processing. Pearson Education India (2000)
Google Scholar
Shaw, D., Wartout, W., Green, C.: Inferring lisp programs from examples. In: IJCAI, vol. 75, pp. 260–267, September 1975
Google Scholar
Parisotto, E., Mohamed, A.R., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic program synthesis. arXiv preprintarXiv:1611.01855 (2016)
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1533–1544 (2013)
Google Scholar
Mooney, R.J.: Semantic parsing: past, present, and future. In: ACL Workshop on Semantic Parsing. Presentation Slides (2014)
Google Scholar
Liu, K., Kim, D., Bissyande, T.F., Kim, T., Kim, K., Le Traon, Y.: Learning to sport and refactor inconsistent method names. In: 41st ACM/IEEE International Conference on Software Engineering (ICSE). IEEE (2019)
Google Scholar
Manna, Z., Waldinger, R.: Knowledge and reasoning in program synthesis. Artif. Intell. 6(2), 175–208 (1975)
MathSciNet
CrossRef
Google Scholar
Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 178–186 (2013)
Google Scholar
Kaiser, L., Sutskever, I.: Neural GPUs learn algorithms. arXiv preprintarXiv:1511.08228 (2015)
Kushman, N., Barzilay, R.: Using semantic unification to generate regular expressions from natural language. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 826–836 (2013)
Google Scholar
Locascio, N., Narasimhan, K., DeLeon, E., Kushman, N., Barzilay, R.: Neural generation of regular expressions from natural language with minimal domain knowledge. arXiv preprintarXiv:1608.03000 (2016)
Parvez, M.R., Chakraborty, S., Ray, B., Chang, K.W.: Building language models for text with named entities. arXiv preprintarXiv:1805.04836 (2018)
Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and log-linear models. Comput. Linguist. 33(4), 493–552 (2007)
CrossRef
Google Scholar
Gao, S., Chen, C., Xing, Z., Ma, Y., Song, W., Lin, S.W.: A neural model for method name generation from functional description. In: 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 414–421. IEEE (2019)
Google Scholar
Gulwani, S., Nlyze, M.M.: Interactive programming by natural language for spreadsheet data analysis and manipulation. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 803–814. ACM (2014)
Google Scholar
Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program. Lang. 4(1–2), 1–119 (2017)
Google Scholar
Iyer, S., Konstas, I., Cheung, A., Zettlemoyer, L.: Summarizing source code using a neural attention model. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 2073–2083 (2016)
Google Scholar
Malik, R.S., Patra, J., Pradel, M.: NL2type: inferring JavaScript function types from natural language information (2019)
Google Scholar
Reed, S., De Freitas, N.: Neural programmer-interpreters. arXiv preprintarXiv:1511.06279 (2015)
Summers, P.D.: A methodology for LISP program construction from examples. J. ACM (JACM) 24(1), 161–175 (1977)
MathSciNet
CrossRef
Google Scholar
Gvero, T., Kuncak, V.: Synthesizing Java expressions from free-form queries. ACM SIGPLAN Not. 50(10), 416–432 (2015)
CrossRef
Google Scholar
Lau, T.: Programming by demonstration: a machine learning approach, Doctoral dissertation (2001)
Google Scholar
Alon, U., Zilberstein, M., Levy, O., Yahav, E.: A general path-based representation for predicting program properties. ACM SIGPLAN Not. 53(4), 404–419 (2018)
CrossRef
Google Scholar
Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: learning distributed representations of code. Proc. ACM Program. Lang. 3(POPL), 40 (2019)
CrossRef
Google Scholar
Lin, X.V., Wang, C., Pang, D., Vu, K., Zettlemoyer, L., Ernst, M.D.: Program synthesis from natural language using recurrent neural networks. University of Washington Department of Computer Science and Engineering, Seattle, WA, USA, Technical report, UW-CSE-17-03-01 (2017)
Google Scholar
Lin, X.V., Wang, C., Zettlemoyer, L., Ernst, M.D.: NL2Bash: a corpus and semantic parser for natural language interface to the Linux operating system. arXiv preprintarXiv:1802.08979 (2018)
Zhong, V., Xiong, C., Socher, R.: Seq2SQL: generating structured queries from natural language using reinforcement learning. arXiv preprintarXiv:1709.00103 (2017)
Ling, W., Grefenstette, E., Hermann, K.M., Kočiský, T., Senior, A., Wang, F., Blunsom, P.: Latent predictor networks for code generation. arXiv preprintarXiv:1603.06744 (2016)
Artzi, Y., Zettlemoyer, L.: Weakly supervised learning of semantic parsers for mapping instructions to actions. Trans. Assoc. Comput. Linguist. 1, 49–62 (2013)
CrossRef
Google Scholar
Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. Commun. ACM 14(3), 151–165 (1971)
CrossRef
Google Scholar