Skip to main content

Artificial Neural Networks for Text-to-SQL Task: State of the Art

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 684)


Databases store a significant amount of data from the world, however, to access this data, users must understand a query language such as SQL. In order to facilitate this task and to make the interaction with databases possible for all the world, researches has recently appeared to approach systems that understand the natural language questions and automatically convert them into SQL queries. The purpose of this article is to provide the state of the art text-to-SQL task in which we present the main models and existing solutions based on Artificial Neural Networks (ANN), precisely on Deep Learning (DL) and Natural Language Processing (NLP). We also specify the experimental settings of each approach, their limits as well as a comparison of the best existing ones.


  • ANN
  • DL
  • NLP
  • SQL
  • Text-to-SQL

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-53187-4_61
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-53187-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  2. Price, P.J.: Evaluation of spoken language systems: the ATIS domain. In: Proceedings0 of the Speech and Natural Language Workshop, pp. 91–95 (1990)

    Google Scholar 

  3. Zelle, J.M., Mooney, R.J.: Learning to Parse Database queries using inductive logic proramming. In: Learning, pp. 1050–1055 (1996)

    Google Scholar 

  4. Tang, L.R., Mooney, R.J.: Automated construction of database interfaces: integrating statistical and relational learning for semantic parsing. In: Proceedings of the Joint SIGDAT Conference on Emprical Methods in Natural Language Processing and Very Large Corpora, pp. 133–141 (2000)

    Google Scholar 

  5. Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer, L.: Learning a neural semantic parser from user feedback. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 963–973, Vancouver, Canada (2017)

    Google Scholar 

  6. Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for relational databases. In: Proceedings of the VLDB Endowment, pp. 73–84 (2014)

    Google Scholar 

  7. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: Sqlizer: query synthesis from natural language. In: International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp. 63:1–63:26. ACM (2017)

    Google Scholar 

  8. Zhong, V., Xiong, C., Socher, R.: Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. ArXiv e-prints, pp. 1–12 (2017)

    Google Scholar 

  9. Finegan-Dollak, C., Kummerfeld, J.K., Zhang, L., Ramanathan, K., Ramanathan, D., Sadasivam, S., Zhang, R., Radev, D.: Improving text-to-sql evaluation methodology. In: ACL 2018. Association for Computational Linguistics (2018)

    Google Scholar 

  10. Yu, T., Zhang, R., Yang, K., et al.: Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv preprint arXiv:1809.08887 (2018)

  11. POPESCU, Ana-Maria, ARMANASU, Alex, ETZIONI, Oren, and al. Modern natural language interfaces to databases: Composing statistical parsing with semantic tractability. In: Proceedings of the 20th international conference on Computational Linguistics. Association for Computational Linguistics, 2004. p. 141

    Google Scholar 

  12. Li, F., Jagadish, H.V.: NaLIR: an interactive natural language interface for querying relational databases. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 709–712. ACM (2014)

    Google Scholar 

  13. Yaghmazadeh, N., Wang, Y., Dillig, I., et al.: SQLizer: query synthesis from natural language. In: Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, p. 63 (2017)

    Google Scholar 

  14. Zhong, V., Xiong, C., Socher, R.: Seq2sql: generating structured queries from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103 (2017)

  15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  16. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)

    Google Scholar 

  17. Hashimoto, K., Xiong, C., Tsuruoka, Y., Socher, R.: A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks. arXiv, cs.CL 1611.01587 (2016)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv, abs/1412.6980 (2014)

    Google Scholar 

  19. Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex, Sutskever, Ilya, Salakhutdinov, Ruslan: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Paszke,A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop (2017)

    Google Scholar 

  21. Xu, X., Liu, C., Song, D.: SQLNet: generating structured queries from natural language without reinforcement learning. arXiv preprint arXiv:1711.04436 (2017)

  22. Yu, T., Li, Z., Zhang, Z., et al.: TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation. arXiv preprint arXiv:1804.09769 (2018)

  23. Wieting, J., Gimpel, K.: Pushing the limits of paraphrastic sentence embeddings with millions of machine translations. arXiv preprint arXiv:1711.05732 (2017)

  24. Yu, T., Yasunaga, M., Yang, K., et al.: SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task. arXiv preprint arXiv:1810.05237 (2018)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Youssef Mellah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Mellah, Y., Ettifouri, H.E., Bouchentouf, T., Belkasmi, M.G. (2020). Artificial Neural Networks for Text-to-SQL Task: State of the Art. In: El Moussati, A., Kpalma, K., Ghaouth Belkasmi, M., Saber, M., Guégan, S. (eds) Advances in Smart Technologies Applications and Case Studies. SmartICT 2019. Lecture Notes in Electrical Engineering, vol 684. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53186-7

  • Online ISBN: 978-3-030-53187-4

  • eBook Packages: Computer ScienceComputer Science (R0)