Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)
Google Scholar
Price, P.J.: Evaluation of spoken language systems: the ATIS domain. In: Proceedings0 of the Speech and Natural Language Workshop, pp. 91–95 (1990)
Google Scholar
Zelle, J.M., Mooney, R.J.: Learning to Parse Database queries using inductive logic proramming. In: Learning, pp. 1050–1055 (1996)
Google Scholar
Tang, L.R., Mooney, R.J.: Automated construction of database interfaces: integrating statistical and relational learning for semantic parsing. In: Proceedings of the Joint SIGDAT Conference on Emprical Methods in Natural Language Processing and Very Large Corpora, pp. 133–141 (2000)
Google Scholar
Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer, L.: Learning a neural semantic parser from user feedback. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 963–973, Vancouver, Canada (2017)
Google Scholar
Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for relational databases. In: Proceedings of the VLDB Endowment, pp. 73–84 (2014)
Google Scholar
Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: Sqlizer: query synthesis from natural language. In: International Conference on Object-Oriented Programming, Systems, Languages, and Applications, pp. 63:1–63:26. ACM (2017)
Google Scholar
Zhong, V., Xiong, C., Socher, R.: Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning. ArXiv e-prints, pp. 1–12 (2017)
Google Scholar
Finegan-Dollak, C., Kummerfeld, J.K., Zhang, L., Ramanathan, K., Ramanathan, D., Sadasivam, S., Zhang, R., Radev, D.: Improving text-to-sql evaluation methodology. In: ACL 2018. Association for Computational Linguistics (2018)
Google Scholar
Yu, T., Zhang, R., Yang, K., et al.: Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv preprint arXiv:1809.08887 (2018)
POPESCU, Ana-Maria, ARMANASU, Alex, ETZIONI, Oren, and al. Modern natural language interfaces to databases: Composing statistical parsing with semantic tractability. In: Proceedings of the 20th international conference on Computational Linguistics. Association for Computational Linguistics, 2004. p. 141
Google Scholar
Li, F., Jagadish, H.V.: NaLIR: an interactive natural language interface for querying relational databases. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 709–712. ACM (2014)
Google Scholar
Yaghmazadeh, N., Wang, Y., Dillig, I., et al.: SQLizer: query synthesis from natural language. In: Proceedings of the ACM on Programming Languages, vol. 1, no. OOPSLA, p. 63 (2017)
Google Scholar
Zhong, V., Xiong, C., Socher, R.: Seq2sql: generating structured queries from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103 (2017)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)
Google Scholar
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)
Google Scholar
Hashimoto, K., Xiong, C., Tsuruoka, Y., Socher, R.: A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks. arXiv, cs.CL 1611.01587 (2016)
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv, abs/1412.6980 (2014)
Google Scholar
Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex, Sutskever, Ilya, Salakhutdinov, Ruslan: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
MathSciNet
MATH
Google Scholar
Paszke,A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS 2017 Workshop (2017)
Google Scholar
Xu, X., Liu, C., Song, D.: SQLNet: generating structured queries from natural language without reinforcement learning. arXiv preprint arXiv:1711.04436 (2017)
Yu, T., Li, Z., Zhang, Z., et al.: TypeSQL: Knowledge-Based Type-Aware Neural Text-to-SQL Generation. arXiv preprint arXiv:1804.09769 (2018)
Wieting, J., Gimpel, K.: Pushing the limits of paraphrastic sentence embeddings with millions of machine translations. arXiv preprint arXiv:1711.05732 (2017)
Yu, T., Yasunaga, M., Yang, K., et al.: SyntaxSQLNet: Syntax Tree Networks for Complex and Cross-DomainText-to-SQL Task. arXiv preprint arXiv:1810.05237 (2018)