Skip to main content

Rice Yield Prediction Using On-Farm Data Sets and Machine Learning

  • Conference paper
  • First Online:
Advances in Smart Technologies Applications and Case Studies (SmartICT 2019)

Abstract

In this paper a rice crop prediction performance analysis of five machine learning and two multilinear regression algorithms is presented. A five hectares rice plot was selected. For the database, in the plot, 72 sampling points spatially distributed were defined. For each sampling point, physicochemical, biomass and leaf chlorophyll content measurement were taken at vegetative stage. Additionally, the plot was flown with a quadcopter to take multispectral images in order to calculate vegetation indices maps. As output variable, the crop yield was defined. The machine learning (ML) algorithms used in this analysis were: Random Forest, eXtreme Gradient Boosting, Support Vector Regression Machines, Multilayer Perceptron Regression Neural Networks, and K-Nearest Neighbors; the multilinear algorithms were Partial Least Squares and Multiple Linear regression (MLR). The results show the best performance for K-Nearest Neighbors with an average absolute error for the testing point of 10.74%. The worst case was the MLR with a root mean square error (RMSE) of 2712.26 kg-ha\(^{-1}\) in the testing dataset, while KNN regression was the best with 1029.69 kg-ha\(^{-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor, P., Altman, N.S., Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression.13050, 37–41 (2014). https://doi.org/10.1080/00031305.1992.10475879

  2. Aslam, M., Mahmood, I.H., Qureshi, R.H., Nawaz, S., Akhtar, J. : Salinity tolerance of rice as affected by boron nutrition. Pak. J. Soil Sci. (Pak.) (2002)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  4. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  5. Chen, T., He, T.: Higgs boson discovery with boosted trees. In: HEPML 2014 Proceedings of the 2014 International Conference on High-Energy Physics and Machine Learning, vol. 42, pp. 69–80 (2014)

    Google Scholar 

  6. Dahnke, W.C., Swenson, L.J., Goos, R.J., Leholm, A.G.: Choosing a crop yield goal. SF-822. Fargo: North Dakota State Extension Service (1988)

    Google Scholar 

  7. Das, B., Nair, B., Reddy, V.K., Venkatesh, P.: Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. Int. J. Biometeorol. 62(10), 1809–1822 (2018). https://doi.org/10.1007/s00484-018-1583-6

    Article  Google Scholar 

  8. Dou, F., Soriano, J., Tabien, R.E., Chen, K.: Soil texture and cultivar effects on rice (Oryza sativa, L.) grain yield, yield components and water productivity in three water regimes. PloS One 11(3), e0150549 (2019)

    Google Scholar 

  9. Filippi, P., Edward, J.J., Niranjan, S.W., Pallegedara, D.S.N.S., Liana, E.P., Sabastine, U.U., Thomas, G.J., Stacey, E.P., Brett, M.W., Thomas, F.A.B.: An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis. Agric. (2019). https://doi.org/10.1007/s11119-018-09628-4

    Article  Google Scholar 

  10. Forkuor, G., Hounkpatin, O.K., Welp, G., Thiel, M.: High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS One 12(1), e0170478 (2017)

    Article  Google Scholar 

  11. Garg, A., Garg, B.: A robust and novel regression based fuzzy time series algorithm for prediction of rice yield. In: ICCT 2017 - International Conference on Intelligent Communication and Computational Techniques, pp. 48–54, January 2018. https://doi.org/10.1109/INTELCCT.2017.8324019

  12. González Sánchez, A., Frausto Solís, J., Ojeda Bustamante, W.: Predictive ability of machine learning methods for massive crop yield prediction (2014)

    Google Scholar 

  13. Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., Shearer, S.: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 153, 213–225 (2018)

    Article  Google Scholar 

  14. Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Team, R.C.: caret: Classification and Regression Training. R package version v6. 0.77 (2017)

    Google Scholar 

  15. Jeong, J.H., Resop, J.P., Mueller, N.D., Fleisher, D.H., Yun, K., Butler, E.E., Kim, S.H.: Random forests for global and regional crop yield predictions. PLoS One 11(6), e0156571 (2016)

    Article  Google Scholar 

  16. Kantanantha, N., Serban, N., Griffin, P.: Yield and price forecasting for stochastic crop decision planning. J. Agric. Biol. Environ. Stat. 15, 362–380 (2010)

    Article  MathSciNet  Google Scholar 

  17. Murtagh, F.: Multilayer perceptrons for classification and regression. Neurocomputing 2(5–6), 183–197 (1991). https://doi.org/10.1016/0925-2312(91)90023-5

    Article  MathSciNet  Google Scholar 

  18. Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M.: Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 121, 57–65 (2016). https://doi.org/10.1016/j.compag.2015.11.018

    Article  Google Scholar 

  19. Rani, P.S., Latha, A.: Effect of calcium, magnesium and boron on nutrient uptake and yield of rice in Kole lands of Kerala. Indian J. Agric. Res. 51(4), 388–391 (2017)

    Google Scholar 

  20. Raun, W.R., Solie, J.B., Johnson, G.V., Stone, M.L., Lukina, E.V., Thomason, W.E., et al.: Inseason prediction of potential grain yield in winter wheat using canopy reflectance. Agron. J. 93, 583–589 (2001)

    Article  Google Scholar 

  21. Reza, M.N., Na, I.S., Baek, S.W., Lee, K.H.: Rice yield estimation based on K-means clustering with graph-cut segmentation using low-altitude UAV images. Biosyst. Eng. 177, 109–121 (2019)

    Article  Google Scholar 

  22. The R Development Core Team: A language and environment for statistical 1031 computing. Vienna, Austria: R Foundation for Statistical Computing, vol. 1032 (2019)

    Google Scholar 

  23. Singh, V., Sarwar, A., Sharma, V.: Analysis of soil and prediction of crop yield (Rice) using machine learning approach. Int. J. Adv. Res. Comput. Sci. 8(5), 1254–1259 (2017)

    Google Scholar 

  24. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing, pp. 199-222. Kluwer Academics (2004). https://doi.org/10.1023/B:STCO.0000035301.49549.88

  25. Stafford, J.V.: Implementing precision agriculture in the 21st century. J. Agric. Eng. Res. 76(3), 267–275 (2000). https://doi.org/10.1006/jaer.2000.0577

    Article  Google Scholar 

  26. Zhang, N., Wang, M., Wang, N.: Precision agriculture - a worldwide overview. Comput. Electron. Agric. 36, 113–132 (2002). https://doi.org/10.1016/S0168-1699(02)00096-0

    Article  Google Scholar 

  27. Zhang, L., Zhang, J., Kyei-boahen, S., Zhang, M.: Simulation and prediction of soybean growth and development under field conditions. Am.-Eurasian J. Agric. Environ. Sci 7(4), 374–385 (2010)

    Google Scholar 

Download references

Acknowledgement

Authors wish to thank Ministerio de Agricultura y Desarrollo Rural (MADR) for financing this study. This work was supported by project “Manejo por sitio específico del agua de riego, el nitrógeno y las malezas en el sistema de producción Arroz, Maíz-Algodón en el Departamento del Tolima” in agreement between Universidad de Ibagué and Corporación Colombiana de Investigación Agropecuaria-Agrosavia, Centro de Investigación Nataima.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Barrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrero, O. et al. (2020). Rice Yield Prediction Using On-Farm Data Sets and Machine Learning. In: El Moussati, A., Kpalma, K., Ghaouth Belkasmi, M., Saber, M., Guégan, S. (eds) Advances in Smart Technologies Applications and Case Studies. SmartICT 2019. Lecture Notes in Electrical Engineering, vol 684. Springer, Cham. https://doi.org/10.1007/978-3-030-53187-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53187-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53186-7

  • Online ISBN: 978-3-030-53187-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics