Skip to main content

GMOs, Biodiversity and Ecosystem Processes

  • Chapter
  • First Online:
GMOs

Part of the book series: Topics in Biodiversity and Conservation ((TOBC,volume 19))

Abstract

Potential impacts of genetically modified (GM) crops on biodiversity is a controversial topic of public interest that comes under scrutiny in the Convention on Biological Diversity. The commercialization of GM crops has delivered global agronomic, economic and social benefits, but it has also raised concerns on the risks to human and environmental health. The current state of knowledge reveals that farmland biodiversity is jeopardized by intensive agricultural practices. The monoculture practice used in the cultivation of GM crops has increased the risk of the emergence of herbicide tolerance and insecticide resistance between weed and insect pest species. This, in turn, may interrupt the food web at different trophic levels. To avoid an overreliance on GM crops, alternative weed control and insect pest management strategies should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agapito-Tenfen SZ, Okoli AS, Bernstein MJ, Wikmark O, Myhr AI (2018) Revisiting risk governance of GM plants: the need to consider new and emerging gene-editing techniques. Front Plant Sci 9:1874. https://doi.org/10.3389/fpls.2018.01874

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson MS, de Vicente MC (2010) Gene flow between crops and their wild relatives. Evol Appl 3(4):402–403. https://doi.org/10.1111/j.1752-4571.2010.00138.x

    Article  Google Scholar 

  • Arntzen CJ, Coghlan A, Johnson B, Peacock J, Rodemeyer M (2003) GM crops: science, politics and communication. Nat Rev Genet 4:839–843

    Article  CAS  Google Scholar 

  • Babar U, Nawaz MA, Arshad U, Azhar MT, Atif RM, Golokhvast KS, Tsatsakis AM, Shcerbakova K, Chung G, Rana IA (2020) Transgenic crops for the agricultural improvement in Pakistan: a perspective of environmental stresses and the current status of genetically modified crops. GM Crops Food 11(1):1–29. https://doi.org/10.1080/21645698.2019.1680078

    Article  PubMed  Google Scholar 

  • Becker R, Marty B, Ulrich A (1998) ExperimentalleVerifizierung von Veränderungenrisikorelevanterökologischer Parameter beitransgenen Kartoffelnmit Veränderungenim Phosphat- und Kohlenhydrat metabolismus. Landesumweltamt Brandenburg, Müncheberg

    Google Scholar 

  • Bergelson J, Purrington CB, Wichmann G (1998) Promiscuity in transgenic plants. Nature 395:25

    Article  CAS  Google Scholar 

  • Bøhn T, Amundsen PA (2004) Ecological interactions and evolution: forgotten parts of biodiversity? Bioscience 54:804–805

    Article  Google Scholar 

  • Boyle JH, Dalgleish HJ, Puzey JR (2019) Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. PNAS 116(8):3006–3011. https://doi.org/10.1073/pnas.1811437116

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2018) Farm income and production impacts of using GM crop technology 1996–2015. GM Crop Food 8:156–193

    Article  Google Scholar 

  • Campbell LG, Lee D, Shukla K, Waite TA, Bartsch D (2016) An ecological approach to measuring the evolutionary consequences of gene flow from crops to wild or weedy relatives. Appl Plants Sci 4(3):apps.1500114. https://doi.org/10.3732/apps.1500114

    Article  Google Scholar 

  • Capinera JL (2005) Relationships between insect pests and weeds: an evolutionary perspective. Weed Sci 53(6):892–901

    Article  Google Scholar 

  • Carlson R (2016) Estimating the biotech sector’s contribution to the US economy. Nat Biotechnol 34:247e255

    Google Scholar 

  • Carpenter JE (2011) Impact of GM crops on biodiversity. GM Crops 2:7–23. https://doi.org/10.4161/gmcr.2.1.15086

    Article  PubMed  Google Scholar 

  • Chèvre AM, Eber F, Darmency H, Fleury A, Picault H, Letanneur JC, Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor Appl Genet 100:1233–1239

    Article  Google Scholar 

  • Clark BW, Phillips TA, Coats JR (2005) Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from transgenic crops: a review. J Agric Food Chem 53:4643–4653

    Article  CAS  Google Scholar 

  • Dandekar AM, Fisk HJ (2005) Plant transformation: agrobacterium-mediated gene transfer. Methods Mol Biol 286:35–46

    CAS  PubMed  Google Scholar 

  • Darmency H (2000) Unpredictability of transgene flow between oilseed rape and wild relatives. Xieme Colloque international sur la biologie des mauvaises herbes, Dijon, pp 597–603

    Google Scholar 

  • Dick CW, Hardy OJ, Jones FA, Petit RJ (2008) Spatial scales of pollen and seed mediated gene flow in tropical rain forest trees. Trop Plant Biol 1(1):20–33

    Article  Google Scholar 

  • Diez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Equiarte LE, Tenaillon MI (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol 199:264–276. https://doi.org/10.1111/nph.12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc B Biol Sci 358:1163–1170

    Article  Google Scholar 

  • European Commission (2010) A decade of EU-funded GMO research. Directorate-General for Research and Innovation Biotechnologies, Agriculture, Food. European Union, Luxembourg, Belgium. ISBN:978-92-79-16344-9. https://doi.org/10.2777/97784

    Book  Google Scholar 

  • FAO (2017) The future of food and agriculture – trends and challenges. FAO, Rome. ISBN:978-92-5-109551-5

    Google Scholar 

  • Frewer LJ, Miles S, Marsh R (2002) The media and genetically modified foods: evidence in support of social amplification of risk. Risk Anal 22:701–711. https://doi.org/10.1111/0272-4332.00062

    Article  PubMed  Google Scholar 

  • Fu YB, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161–168. https://doi.org/10.2135/cropsci2008.03.0125

    Article  Google Scholar 

  • Guo Y, Feng Y, Ge Y, Tetreau G, Chen X, Dong X, Shi W (2014) The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods. PLoS One 9(12):e114228. https://doi.org/10.1371/journal.pone.0114228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardigan MA, Laimbeer PE, Newton L et al (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. PNAS 114:E9999–E10008. https://doi.org/10.1073/pnas.1714380114

    Article  CAS  PubMed  Google Scholar 

  • Harper JL, Hawksworth DL (1994) Biodiversity: measurement and estimation. Phil Trans R Soc Lond B 345:5–12

    Article  CAS  Google Scholar 

  • Heap I (2014) Global perspective of herbicide-resistance weeds. Pest Manag Sci 70:1306–1315. https://doi.org/10.1002/ps.3696

    Article  CAS  PubMed  Google Scholar 

  • Hilbeck A, Otto M (2015) Specificity and combinatorial effects of Bacillus thuringiensis cry toxins in the context of GMO environmental risk assessment. Front Environ Sci 3:71. https://doi.org/10.3389/fenvs.2015.00071

    Article  Google Scholar 

  • Hilbeck A, Baumgartner M, Fried PM, Bigler F (1998) Effects of transgenic Bacillus thuringiensiscornfed prey on mortality and development time of immature Chrysoperlacarnea (Neuroptera: Chrysopidae). Environ Entomol 27:480–487

    Article  Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA brief no. 53. ISAAA, Ithaca

    Google Scholar 

  • Juhasz-Nagy P (1993) Notes on compositional diversity. Hydrobiologia 249:173–182

    Article  Google Scholar 

  • Kanianska R (2016) Agriculture and its impact on land-use, environment, and ecosystem services. In: Almusaed A (ed) The influence of land use and anthropogenic impacts of landscape creation. IntechOpen. https://doi.org/10.5772/63719

  • Kessler C, Economidis I (2001) A review of results. EC-sponsored research on safety of genetically modified organisms. European Commission. European Communities. ISBN:92-894-1527-4

    Google Scholar 

  • Lam HM et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059. https://doi.org/10.1038/ng.715

    Article  CAS  PubMed  Google Scholar 

  • Latham JR, Love M, Hilbeck A (2017) The distinct properties of natural and GM cry insecticidal proteins. Biotech Genet Eng Rev 33(1):62–96. https://doi.org/10.1080/02648725.2017.1357295

    Article  CAS  Google Scholar 

  • Lohaus K, Vidal S, Thies C (2013) Farming practices change food web structures in cereal aphid-parasitoid-hyperparasitoid communities. Oecologia 171(1):249–259

    Article  Google Scholar 

  • Lovei GL, Bøhn T, Hilbeck A (2010) Ecosystem services and genetically modified organisms. Third World Network, Penang. ISBN:978-967-5412-13-4

    Google Scholar 

  • Lu BR, Yang C (2009) Gene flow from genetically modified rice to its wild relatives: assessing potential ecological consequences. Biotechnol Adv 27:1083–1091

    Article  CAS  Google Scholar 

  • Lucht JM (2015) Public acceptance of plant biotechnology and GM crops. Viruses 7:4254–4281. https://doi.org/10.3390/v7082819

    Article  PubMed  PubMed Central  Google Scholar 

  • Magurran AE (2003) Measuring biological diversity. Blackwell Publishing, Oxford, 256p

    Google Scholar 

  • Marshall EJP (2001) Biodiversity, herbicides and non-target plants. In: BCPC conference weeds. BCPC, Farnham, pp 855–862

    Google Scholar 

  • Mathur V, Javid L, Kushrestha S, Mandal A, Reddy AA (2017) World cultivation of genetically modified crops: opportunities and risks. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 25. Springer, Cham

    Chapter  Google Scholar 

  • Mertens M (2008) Assessment of environmental impacts of genetically modified plants BfN – Skripten 217. New York, Federal Agency for Nature Conservation

    Google Scholar 

  • National Academy of Sciences, Engineering, and Medicine (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC. https://doi.org/10.17226/23395

    Book  Google Scholar 

  • Nawaz MA, Yang SH, Chung G (2018) Wild soybeans: an opportunistic resource for soybean improvement. In: Grillo O (ed) Rediscovery of landraces as a resource for the future. IntechOpen. https://doi.org/10.5772/intechopen.74973

  • Nawaz MA, Mesnage R, Tsatsakis AM, Golokhvast KS, Yang SH, Antoniou MN, Chung G (2019) Addressing concerns over the fate of DNA derived from genetically modified food in the human body: a review. Food Chem Toxicol 124:423–430. https://doi.org/10.1016/j.fct.2018.12.030

    Article  CAS  PubMed  Google Scholar 

  • Nicholls CI, Altieri MA (2012) Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron Sustain Dev 33:257–274

    Article  Google Scholar 

  • Otiman IP, Badea EM, Buzdugan L (2008) Roundup ready soybean, a Romanian story. Bull UnivAgricSci Vet Med Cluj-Napoca Anim Sci Biotechnol 65:352–357

    Google Scholar 

  • Palinkas Z, Kiss J, Zalai M, Szenasi A, Dorner Z, North S, Woodward G, Balog A (2017) Effects of genetically modified maize events expressing Cry34Ab1, Cry35Ab1, Cry1F and CP4 EPSPS proteins on arthropod complex food webs. Ecol Evol 7(7):2286–2293

    Article  Google Scholar 

  • Palinkas Z, Zalai M, Szensai A, Dorner Z, Kiss J, North S, Woodward G, Balog A (2018) Arthropods dataset from different genetically modified maize events and associated controls. Sci Data 5(180019). https://doi.org/10.1038/sdata.2018.19

  • Papa R, Gepts P (2004) Gene flow between crops and their wild progenitors. Encycl Plant Crop Sci:488–491. https://doi.org/10.1081/E-EPCS120017095

  • Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol 369573:13. https://doi.org/10.5402/2011/369573

    Article  Google Scholar 

  • Rodrigo-Simon A, de Maagd RA, Avilla C, Bakker PL, Molthoff JW, Gonzalez-Zamora J, Ferre J (2006) Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator green lacewing: a toxicological, histopathological, and biochemical approach. Appl Environ Microbiol 72:1595–1603

    Article  CAS  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Springer, Heidelberg

    Google Scholar 

  • Schutte G, Eckerstorfer M, Rastelli V et al (2017) Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environ Sci Eur 29:5. https://doi.org/10.1186/s12302-016-0100-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sneller CH (2003) Impact of transgenic genotypes and subdivisions on diversity within elite North American soybean germplasm. Crop Sci 43:409–414. https://doi.org/10.2135/cropsci2003.4090

    Article  Google Scholar 

  • Szenasi A, Palinkas Z, Zalai M, Schmitz OJ, Balog A (2014) Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment. Sci Rep 4:5315. https://doi.org/10.1038/srep05315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tappeser B, Reichenbecher W, Teichmann H (2014) Agronomic and environmental aspects of the cultivation of genetically modified herbicide-resistant plants. A BfNFOEN-EAA-Joint paper, BfN-Skripten. http://www.bfn.de/fileadmin/MDB/documents/service/skript362.pdf

    Google Scholar 

  • Tsatsakis AM, Nawaz MA, Tutelyan VA, Golokhvast KS, Kalantzi O-I, Chung DH et al (2017a) Impact on environment, ecosystem, diversity and health from culturing and using GMOs as feed and food. Food Chem Toxicol 107:108–121

    Article  CAS  Google Scholar 

  • Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, Chung G (2017b) Environmental impacts of genetically modified plants: a review. Environ Res 156:818–833

    Article  CAS  Google Scholar 

  • Van Eenennaam AL (2013) GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations. J Anim Sci Biotechnol 4:37. https://doi.org/10.1186/2049-1891-4-37

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma SR (2013) Genetically modified plants: public and scientific perceptions. ISRN Biotechnol. https://doi.org/10.5402/2013/820671

  • Vrbnicanin S, Bozic D, Pavlovic D (2017) Gene flow from herbicide-resistant crops to wild relatives. In: Pacanoski Z (ed) Herbicide resistance in weeds and crops. IntechOpen. https://doi.org/10.5772/67645

  • Wrinn KM, Evans SC, Rypstra AL (2012) Predator cues and an herbicide affect activity and emigration in an agrobiont wolf spider. Chemosphere 87(4):390–396. https://doi.org/10.1016/j.chemosphere.2011.12.030

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Liu X, Ge S et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying ergonomically important genes. Nat Biotech 30:105–111. https://doi.org/10.1038/nbt.2050

    Article  CAS  Google Scholar 

  • Zhang C, Wohlhueter R, Zhang H (2016) Genetically modified foods: a critical review of their promise and problems. Food Sci Human Wellness 5:116–123. https://doi.org/10.1016/j.fshw.2016.04.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Hong Kong Research Grants Council Area of Excellence Scheme (AoE/M-403/16). JY Chu copy-edited the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyuhwa Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawaz, M.A., Golokhvast, K.S., Tsatsakis, A.M., Lam, HM., Chung, G. (2020). GMOs, Biodiversity and Ecosystem Processes. In: Chaurasia, A., Hawksworth, D.L., Pessoa de Miranda, M. (eds) GMOs. Topics in Biodiversity and Conservation, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-53183-6_1

Download citation

Publish with us

Policies and ethics