Skip to main content

Progress in PET Imaging of the Norepinephrine Transporter System

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The norepinephrine transporter (NET) has long been recognized to play a role in various neurological and psychiatric disorders, e.g., ADHD, substance abuse, depression, alcoholism, obesity, addiction, and Alzheimer’s and Parkinson’s diseases. However, many of the important findings resulting from studies in vitro using postmortem tissues have never been verified via in vivo methods due to the lack of suitable radioligands, preventing the brain imaging of NET in living systems. We have identified the superiority of (S,S)-[11C]MRB and the suitability of the MRB analogs as potential NET ligands for PET translational studies from preclinical investigation in animals to clinical research in humans. In this review article, progress in these translational research studies will be discussed, including the role of NET in ADHD, substance abuse, depression, post -traumatic stress disorder (PTSD), alcohol dependence, obesity, aging, Parkinson’s disease, and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ding YS, Lin KS, Logan J (2006) PET imaging of norepinephrine transporters. Curr Pharm Des 12:3831–3845

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Lin KS, Garza V, Carter P, Alexoff D, Logan J et al (2003) Evaluation of a new norepinephrine transporter PET ligand in baboons, both in brain and peripheral organs. Synapse 50:345–352

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Lin KS, Logan J, Benveniste H, Carter P (2005) Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter: (S,S) and (R,R) enantiomers of reboxetine analogs ( 11C methylreboxetine, 3-Cl- 11C methylreboxetine and 18F fluororeboxetine), (R)- 11C nisoxetine, 11C oxaprotiline and 11C lortalamine. J Neurochem 94:337–351

    Article  CAS  PubMed  Google Scholar 

  • Lin KS, Ding YS, Kim SW, Kil KE (2005) Synthesis, enantiomeric resolution, F-18 labeling and biodistribution of reboxetine analogs: promising radioligands for imaging the norepinephrine transporter with positron emission tomography. Nucl Med Biol 32:415–422

    Article  CAS  PubMed  Google Scholar 

  • Smith HR, Beveridge TJ, Porrino LJ (2006) Distribution of norepinephrine transporters in the non-human primate brain. Neuroscience 138:703–714

    Article  CAS  PubMed  Google Scholar 

  • Tejani-Butt SM (1992) 3H nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    CAS  PubMed  Google Scholar 

  • Kaufman MJ, Spealman RD, Madras BK (1991) Distribution of cocaine recognition sites in monkey brain: I. in vitro autoradiography with [3H]CFT. Synapse 9:177–187

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Chen TB, Miller PJ, Dean, Tang, Ys, et al. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites. Nucl Med Biol 2006;33:555–563.

    Google Scholar 

  • Charnay Y, Leger L, Vallet PG, Hof PR, Jouvet M, Bouras C (1995) 3H nisoxetine binding sites in the cat brain: an autoradiographic study. Neuroscience 69:259–270

    Article  CAS  PubMed  Google Scholar 

  • Ding Y-S, Fowler J (2005) New-generation radiotracers for nAChR and NET. Nucl Med Biol 32(7):707–718

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Singhal T, Planeta-Wilson B et al (2010) PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S,S)- (11)C O-methylreboxetine and HRRT. Synapse 64(1):30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallezot JD, Planeta-Wilson B, Wang GK, Carson RE, Ding YS (2007) Parametric imaging of the NET radioligand C-11 MRB in humans: a test-retest study. J Nucl Med 48:159P

    Google Scholar 

  • Gallezot JD, Weinzimmer D, Nabulsi N, Lin SF, Fowles K, Sandiego C et al (2010) Evaluation of 11C MRB for assessment of occupancy of norepinephrine transporters: studies with atomoxetine in non-human primates. NeuroImage 56:268–279

    Article  PubMed  CAS  Google Scholar 

  • Hannestad J, Gallezot JD, Planeta-Wilson B et al (2010a) Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry 68:854–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2005) Effects of chronic cocaine self-administration on norepinephrine transporters in the nonhuman primate brain. Psychopharmacology 180:781–788

    Article  CAS  PubMed  Google Scholar 

  • Macey DJ, Smith HR, Nader MA, Porrino LJ (2003) Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. J Neurosci 23:12–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mash DC, Ouyang Q, Qin Y, Pablo J (2005) Norepinephrine transporter immunoblotting and radioligand binding in cocaine abusers. J Neurosci Methods 143:79–85

    Article  CAS  PubMed  Google Scholar 

  • Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451

    Article  CAS  PubMed  Google Scholar 

  • Li CSR, Huang C, Constable RT, Sinha R (2006) Imaging response inhibition in a stop signal task – neural correlates independent of signal monitoring and post-response processing. J Neurosci 26:186–192

    Article  CAS  PubMed  Google Scholar 

  • Burchett SA, Bannon MJ (1997) Serotonin, dopamine and norepinephrine transporter mRNAs: heterogeneity of distribution and response to “binge” cocaine administration. Brain 49:95–102

    CAS  Google Scholar 

  • Dopheide JA, Pliszka SR (2009) Attention-deficit-hyperactivity disorder: an update. Pharmacotherapy 29:656–679

    Article  PubMed  Google Scholar 

  • Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65–94

    Article  PubMed  Google Scholar 

  • Bush G (2010) Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology 35:278–300

    Article  PubMed  Google Scholar 

  • Makris N, Biederman J, Monuteaux MC, Seidman LJ (2009) Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci 31:36–49

    Article  CAS  PubMed  Google Scholar 

  • Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF (2006) Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67(suppl 8):7–12

    CAS  PubMed  Google Scholar 

  • Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH et al (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27:699–711

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain SR, Del Campo N, Dowson J, Müller U, Clark L, Robbins TW et al (2007a) Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiatry 62:977–984

    Article  CAS  PubMed  Google Scholar 

  • Del Campo N, Chamberlain SR, Sahakian BJ, Robbins TW (2011) The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit/hyperactivity disorder. Biol Psychiatry 69:e145–e157

    Article  PubMed  CAS  Google Scholar 

  • Michelson D, Faries D, Wernicke J, Kelsey D, Kendrick K, Sallee FR et al (2001) Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics 108:E83

    Article  CAS  PubMed  Google Scholar 

  • Spencer TJ, Biederman J, Wilens TE, Faraone SV (2002) Novel treatments for attention deficit/hyperactivity disorder in children. J Clin Psychiatry 63(Suppl 12):16–22

    CAS  PubMed  Google Scholar 

  • Swanson JM, Volkow ND (2009) Psychopharmacology: concepts and opinions about the use of stimulant medications. J Child Psychol Psychiatry 50:180–193

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Wang GW, Fowler JS, Logan J, Gerasimov M, Maynard L et al (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21:RC121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan J, Wang GJ, Telang F, Fowler JS, Alexoff D, Zabroski J et al (2007) Imaging the norepinephrine transporter in humans with (S, S)- 11C O-methyl reboxetine and PET: problems and progress. Nucl Med Biol 34:667–679

    Article  CAS  PubMed  Google Scholar 

  • Seneca N, Gulyás B, Varrone A, Schou M, Airaksinen A, Tauscher J et al (2006) Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S, S)- 18F FMeNER-D2. Psychopharmacology 188:119–127

    Article  CAS  PubMed  Google Scholar 

  • Faraone SV, Biederman J, Spencer T, Michelson D, Adler L, Reimherr F et al (2005) Efficacy of atomoxetine in adult attention-deficit/hyperactivity disorder: a drug-placebo response curve analysis. Behav Brain Funct 1:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton J (2005) Atomoxetine: a new pharmacotherapeutic approach in the management of attention deficit/hyperactivity disorder. Arch Dis Child 90(Supp 1):i26–ii9

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci 32:267–287

    CAS  Google Scholar 

  • Volkow ND (2006) Stimulant medications: how to minimize their reinforcing effects? Am J Psychiatry 163(3):359–361

    Article  PubMed  Google Scholar 

  • Dell'Osso B, Palazzo MC, Oldani L, Altamura AC (2010) The noradrenergic action in antidepressant treatments: pharmacological and clinical aspects. CNS Neurosci Ther 17:723–732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Sullivan JB, Ryan KM, Curtin NM, Harkin A, Connor TJ (2009) Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: implications for depression and neurodegeneration. Int J Neuropsychopharmacol 12(5):687–699

    Article  CAS  PubMed  Google Scholar 

  • Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with 11C DAPP and 11C DASB. Eur J Nucl Med 27:1719–1722

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Hwang DR, Narendran R, Sudo Y, Chatterjee R, Bae SA et al (2002) Comparative evaluation in nonhuman primates of five PET radiotracers for imaging the serotonin transporters: 11C McN 5652, 11C ADAM, 11C DASB, 11C DAPA, and 11C AFM. J Cereb Blood Flow Metab 22:1377–1398

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi M, Groshan K, Blakely RD, Richelson E (1997) Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol 340:249–258

    Article  CAS  PubMed  Google Scholar 

  • Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H (2005) A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol 114(2):216–222

    Article  PubMed  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003a) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116

    Article  CAS  PubMed  Google Scholar 

  • Bari A, Eagle DM, Mar AC, Robinson ES, Robbins TW (2009) Dissociable effects of noradrenaline, dopamine, and serotonin uptake blockade on stop task performance in rats. Psychopharmacology 205(2):273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlain SR, Müller U, Blackwell AD, Clark L, Robbins TW, Sahakian BJ (2006) Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 311(5762):861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199(3):439–456

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain SR, Müller U, Deakin JB, Corlett PR, Dowson J, Cardinal RN et al (2007b) Lack of deleterious effects of buspirone on cognition in healthy male volunteers. J Psychopharmacol 21:210–215

    Article  CAS  PubMed  Google Scholar 

  • Ding YS, Fowler JS, Volkow ND, Dewey SL, Wang GJ, Logan J et al (1997) Chiral drugs: comparison of the pharmacokinetics of [11C]d-threo and L-threo-methylphenidate in the human and baboon brain. Psychopharmacology 131(1):71–78

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS et al (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Eshleman AJ, Carmolli M, Cumbay M, Martens CR, Neve KA, Janowsky A (1999) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type. J Pharmacol Exp Ther 289:877–885

    CAS  PubMed  Google Scholar 

  • Biederman J, Melmed RD, Patel A et al (2008) A randomized, double-blind, placebo-controlled study of guanfacine extended release in children and adolescents with attention-deficit/hyperactivity disorder. Pediatrics 121(1):e73–e84

    Article  PubMed  Google Scholar 

  • Berridge CW, Devilbiss DM, Andrzejewski ME et al (2006) Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 60(10):1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Dowson JH, Sahakian BJ, Robbins TW (2003b) Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 54:1465–1468

    Article  CAS  PubMed  Google Scholar 

  • Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH et al (2010b) Clinically relevant doses of methylphenidate significantly occupy the norepinephrine transporter in humans in vivo. Biol Psychiatry 6:854–860

    Article  CAS  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94(1):127–152

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ et al (2008) Methylphenidate decreased the amount of glucose needed by the brain to perform a cognitive task. PLoS One 3:e2017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zafar HM, Pare WP, Tejani-Butt SM (1997) Effect of acute or repeated stress on behavior and brain norepinephrine system in Wistar-Kyoto (WKY) rats. Brain 44:289–295

    CAS  Google Scholar 

  • Arnsten AF, Li BM (2005) Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57(11):1377–1384

    Article  CAS  PubMed  Google Scholar 

  • Liprando LA, Miner LH, Blakely RD, Lewis DA, Sesack SR (2004) Ultrastructural interactions between terminals expressing the norepinephrine transporter and dopamine neurons in the rat and monkey ventral tegmental area. Synapse 54:233–244

    Article  CAS  Google Scholar 

  • Miner LH, Jedema HP, Moore FW, Blakely RD, Grace AA, Sesack SR (2006) Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and the coexpression of tyrosine hydroxylase in norepinephrine axons in the prefrontal cortex. J Neurosci 26:1571–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci 22:389–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armour C, Elhai JD, Richardson D, Ractliffe K, Wang L, Elklit A (2012) Assessing a five factor model of PTSD: is dysphoric arousal a unique PTSD construct showing differential relationships with anxiety and depression? J Anxiety Disord 26(2):368–376

    Article  PubMed  Google Scholar 

  • Elhai JD, Biehn TL, Armour C, Klopper JJ, Frueh BC, Palmieri PA (2011) Evidence for a unique PTSD construct represented by PTSD's D1-D3 symptoms. J Anxiety Disord 25:340–345

    Article  PubMed  Google Scholar 

  • Pietrzak RH, Tsai J, Harpaz-Rotem I, Whealin JM, Southwick SM (2012) Support for a novel five-factor model of posttraumatic stress symptoms in three independent samples of Iraq/Afghanistan veterans: a confirmatory factor analytic study. J Psychiatr Res 46:317–322

    Article  PubMed  Google Scholar 

  • Pietrzak RH, Gallezot JD, Ding YS et al (2013) Association of posttraumatic stress disorder with reduced in vivo norepinephrine transporter availability in the locus coeruleus. JAMA 70:1199–1205

    CAS  Google Scholar 

  • Pincus HA, First M, Frances A, McQueen L (1996) Reviewing DSM-IV. Am J Psychiatry 153(6):850

    Article  CAS  PubMed  Google Scholar 

  • Camastra S, Bonora E, Del Prato S, Rett K, Weck M, Ferrannini E (1999) Effect of obesity and insulin resistance on resting and glucose-induced thermogenesis in man. Int J Obes Relat Metab Disord 23:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Golay A, Schutz Y, Felber JP, de Fronzo RA, Jequier E (1986) Lack of thermogenic response to glucose/insulin infusion in diabetic obese subjects. Int J Obes 10:107–116

    CAS  PubMed  Google Scholar 

  • Jequier E, Schutz Y (1985) New evidence for a thermogenic defect in human obesity. Int J Obes 9(Suppl 2):1–7

    PubMed  Google Scholar 

  • Yeckel CW, Gulanski B, Zgorski ML, Dziura J, Parish R, Sherwin RS (2009) Simple exercise recovery index for sympathetic overactivity is linked to insulin resistance. Med Sci Sports Exerc 41:505–515

    Article  CAS  PubMed  Google Scholar 

  • Wijers SL, Saris WH, van Marken Lichtenbelt WD (2009) Recent advances in adaptive thermogenesis: potential implications for the treatment of obesity. Obes Rev 10:218–226

    Article  CAS  PubMed  Google Scholar 

  • Christensen CR, Clark PB, Morton KA (2006) Reversal of hypermetabolic brown adipose tissue in F-18 FDG PET imaging. Clin Nucl Med 31:193–196

    Article  PubMed  Google Scholar 

  • Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398

    Article  PubMed  Google Scholar 

  • Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    Article  CAS  PubMed  Google Scholar 

  • Agrawal A, Nair N, Baghel NS (2009) A novel approach for reduction of brown fat uptake on FDG PET. Br J Radiol 82:626–631

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    Article  PubMed  Google Scholar 

  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SF, Fan X, Yeckel CW, Weinzimmer D, Mulnix T, Gallezot JD et al (2012) Ex vivo and in vivo evaluation of the norepinephrine transporter ligand 11C MRB for brown adipose tissue imaging. Nucl Med Biol 39:1081–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esler MD, Wallin G, Dorward PK et al (1991) Effects of desipramine on sympathetic nerve firing and norepinephrine spillover to plasma in humans. Am J Phys 260:R817–R823

    CAS  Google Scholar 

  • Ganguly PK, Dhalla KS, Innes IR, Beamish RE, Dhalla NS (1986) Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy. Circ Res 59:684–693

    Article  CAS  PubMed  Google Scholar 

  • Haenisch B, Linsel K, BruÆss M, Gilsbach R, Propping P, NoÆthen MM et al (2009) Association of major depression with rare functional variants in norepinephrine transporter and serotonin1A receptor genes. Am J Med Genet B Neuropsychiatr Genet 150B:1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Hahn MK, Blackford JU, Haman K, Mazei-Robison M, English BA, Prasad HC et al (2008) Multivariate permutation analysis associates multiple polymorphisms with subphenotypes of major depression. Genes Brain Behav 7:487–495

    Article  CAS  PubMed  Google Scholar 

  • Hahn MK, Mazei-Robison MS, Blakely RD (2005) Single nucleotide polymorphisms in the human norepinephrine transporter gene affect expression, trafficking, antidepressant interaction, and protein kinase C regulation. Mol Pharmacol 68:457–466

    Article  CAS  PubMed  Google Scholar 

  • Hahn MK, Robertson D, Blakely RD (2003) A mutation in the human norepinephrine transporter gene (SLC6A2) associated with orthostatic intolerance disrupts surface expression of mutant and wild-type transporters. J Neurosci 23:4470–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MK, Steele A, Couch RS, Stein MA, Krueger JJ (2009) Novel and functional norepinephrine transporter protein variants identified in attention deficit hyperactivity disorder. Neuropharmacology 57:694–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson SD, Matthies HJG, Owens WA, Sathananthan V, Christianson NSB, Kennedy JP et al (2010) Insulin reveals Akt signaling as a novel regulator of norepinephrine transporter trafficking and norepinephrine homeostasis. J Neurosci 30:11305–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang JJ, Yeckel CW, Gallezot JD et al (2015) Imaging human brown adipose tissue under room temperature conditions with (11)C-MRB, a selective norepinephrine transporter PET ligand. Metabolism 64:747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondin DP, Labbe SM, Tingelstad HC, Noll C, Kunach M, Phoenix S et al (2014) Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab 99(3):E438–E446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W et al (2014) Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63(11):3686–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CS, Potenza MN, Lee DE et al (2014) Decreased norepinephrine transporter availability in obesity: Positron Emission Tomography imaging with (S,S)- (11)C O-methylreboxetine. NeuroImage 86:306–310

    Article  CAS  PubMed  Google Scholar 

  • Hu HH, Perkins TG, Chia JM, Gilsanz V (2013) Characterization of human brown adipose tissue by chemical-shift water-fat MRI. AJR Am J Roentgenol 200(1):177–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Melasch J, Rullmann M, Hilbert A, Luthardt J, Becker GA, Patt M et al (2016) The central nervous norepinephrine network links a diminished sense of emotional Well-being to an increased body weight. Int J Obes 40(5):779–787

    Article  CAS  Google Scholar 

  • Pattinson KTS, Mitsis GD, Harvey AK, Jbabdi S, Dirckx S, Mayhew SD et al (2009) Determination of the human brainstem respiratory control network and its cortical connections in vivo using functional and structural imaging. NeuroImage 44(2):295–305

    Article  PubMed  Google Scholar 

  • Bresch A, Rullmann M, Luthardt J, Becker GA, Reissig G, Patt M et al (2017) Emotional eating and in vivo norepinephrine transporter availability in obesity: a [(11) C]MRB PET pilot study. Int J Eat Disord 50(2):152–156

    Article  CAS  PubMed  Google Scholar 

  • Lindgren E, Gray K, Miller G, Tyler R, Wiers CE, Volkow ND et al (2018) Food addiction: A common neurobiological mechanism with drug abuse. Front Biosci (Landmark Ed) 23:811–836

    Article  CAS  Google Scholar 

  • Kish SJ, Shannak KS, Rajput AH, Gilbert JJ, Hornykiewicz O (1984) Cerebellar norepinephrine in patients with Parkinson's disease and control subjects. Arch Neurol 41(6):612–614

    Article  CAS  PubMed  Google Scholar 

  • Nahimi A, Sommerauer M, Kinnerup MB, Ostergaard K, Winterdahl M, Jacobsen J et al (2018) Noradrenergic deficits in Parkinson disease imaged with (11)C-MeNER. J Nucl Med 59(4):659–664

    Article  CAS  PubMed  Google Scholar 

  • Sommerauer M, Fedorova TD, Hansen AK, Knudsen K, Otto M, Jeppesen J et al (2018a) Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain 141(2):496–504

    Article  PubMed  Google Scholar 

  • Sommerauer M, Hansen AK, Parbo P, Fedorova TD, Knudsen K, Frederiksen Y et al (2018b) Decreased noradrenaline transporter density in the motor cortex of Parkinson's disease patients. Mov Disord 33(6):1006–1010

    Article  CAS  PubMed  Google Scholar 

  • Yatham LN, Sossi V, Ding YS, Vafai N, Arumugham SS, Dhanoa T et al (2018) A positron emission tomography study of norepinephrine transporter occupancy and its correlation with symptom response in depressed patients treated with quetiapine XR. Int J Neuropsychopharmacol 21(2):108–113

    Article  CAS  PubMed  Google Scholar 

  • Vanicek T, Spies M, Rami-Mark C, Savli M, Hoflich A, Kranz GS et al (2014) The norepinephrine transporter in attention-deficit/hyperactivity disorder investigated with positron emission tomography. JAMA Psychiat 71(12):1340–1349

    Article  Google Scholar 

  • Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley SJ et al (1996) Dopamine transporters decrease with age. J Nucl Med 37(4):554–559

    CAS  PubMed  Google Scholar 

  • Baker KG, Tork I, Hornung JP, Halasz P (1989) The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp Brain Res 77(2):257–270

    Article  CAS  PubMed  Google Scholar 

  • Sharma Y, Xu T, Graf WM, Fobbs A, Sherwood CC, Hof PR et al (2010) Comparative anatomy of the locus coeruleus in humans and nonhuman primates. J Comp Neurol 518(7):963–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 1986;234(4777):734–7.

    Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969

    Article  CAS  PubMed  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M (1981) Selective loss of neurones of origin of adrenergic projection to cerebral cortex (nucleus locus coeruleus) in senile dementia. Lancet (London, England) 1(8223):783–784

    Article  CAS  Google Scholar 

  • Bondareff W, Mountjoy CQ, Roth M, Rossor MN, Iversen LL, Reynolds GP et al (1987) Neuronal degeneration in locus ceruleus and cortical correlates of Alzheimer disease. Alzheimer Dis Assoc Disord 1(4):256–262

    Article  CAS  PubMed  Google Scholar 

  • Burke WJ, Chung HD, Huang JS, Huang SS, Haring JH, Strong R et al (1988) Evidence for retrograde degeneration of epinephrine neurons in Alzheimer's disease. Ann Neurol 24(4):532–536

    Article  CAS  PubMed  Google Scholar 

  • Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18(4):401–406

    Article  CAS  PubMed  Google Scholar 

  • Chan-Palay V, Asan E (1989) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson's disease with and without dementia and depression. J Comp Neurol 287(3):373–392

    Article  CAS  PubMed  Google Scholar 

  • Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q (2015) Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci 9:220

    Article  PubMed  PubMed Central  Google Scholar 

  • German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK et al (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32(5):667–676

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P et al (1985) Transmitter deficits in Alzheimer's disease. Neurochem Int 7(4):545–563

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, Mountjoy CQ et al (1983) Loss of pigmented dopamine-beta-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer's type. Neurosci Lett 39(1):95–100

    Article  CAS  PubMed  Google Scholar 

  • Mann DM, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multi-infarct dementias. J Neurol Neurosurg Psychiatry 45(2):113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcyniuk B, Mann DM, Yates PO (1986) The topography of cell loss from locus caeruleus in Alzheimer's disease. J Neurol Sci 76(2–3):335–345

    Article  CAS  PubMed  Google Scholar 

  • Strong R, Huang JS, Huang SS, Chung HD, Hale C, Burke WJ (1991) Degeneration of the cholinergic innervation of the locus ceruleus in Alzheimer's disease. Brain Res 542(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS et al (2013) Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology 80(13):1202–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen AK, Knudsen K, Lillethorup TP, Landau AM, Parbo P, Fedorova T et al (2016) In vivo imaging of neuromelanin in Parkinson’s disease using 18 F-AV-1451 PET. Brain 139(7):2039–2049

    Article  PubMed  Google Scholar 

  • Lemoine L, Leuzy A, Chiotis K, Rodriguez-Vieitez E, Nordberg A (2018) Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement (Amst) 10:232–236

    Article  Google Scholar 

  • Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A (2017) Tau PET imaging: present and future directions. Mol Neurodegener 12(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clewett D, Lee TH, Greening SG, Ponzio A, Margalit E, Mather M (2016) Neuromelanin marks the spot: identifying a locus coeruleus biomarker of cognitive reserve in healthy aging. Neurobiol Aging 37:117–126

    Article  CAS  PubMed  Google Scholar 

  • Keren NI, Lozar CT, Harris KC, Morgan PS, Eckert MA (2009) In vivo mapping of the human locus coeruleus. NeuroImage 47(4):1261–1267

    Article  PubMed  Google Scholar 

  • Keren NI, Taheri S, Vazey EM, Morgan PS, Granholm A-CE, Aston-Jones GS et al (2015) Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. NeuroImage 113:235–245

    Article  PubMed  Google Scholar 

  • Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K et al (2006) Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson's disease. Neuroreport 17(11):1215–1218

    Article  PubMed  Google Scholar 

  • Li CS, Kosten TR, Sinha R (2005) Sex differences in brain activation during stress imagery in abstinent cocaine users: a functional magnetic resonance imaging study. Biol Psychiatry 57(5):487–494

    Article  CAS  PubMed  Google Scholar 

  • Logan J, Ding YS, Lin KS, Pareto D, Fowler J, Biegon A (2005) Modeling and analysis of PET studies with norepinephrine transporter ligands: the search for a reference region. Nucl Med Biol 32:531–542

    Article  CAS  PubMed  Google Scholar 

  • Ichise M, Toyama H, Innis RB, Carson RE (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22:1271–1281

    Article  PubMed  Google Scholar 

  • Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Halldin C, Pike VW, Mozley PD, Dobson D, Innis RB et al (2005) Post-mortem human brain autoradiography of the norepinephrine transporter using (S,S)- 18F FMeNER-D2. Eur Neuropsychopharmacol 15:517–520

    Article  CAS  PubMed  Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Hall H, Gulyas B et al (2004) PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 53:57–67

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Halldin C, Varrone A, Karlsson P, Sjoholm N, Stubbs JB et al (2008a) Biodistribution and radiation dosimetry of the norepinephrine transporter radioligand (S,S)-[18F]FMeNER-D2: a human whole-body PET study. Eur J Nucl Med Mol Imaging 35(3):630–636

    Article  CAS  PubMed  Google Scholar 

  • Takano A, Varrone A, Gulyas B, Karlsson P, Tauscher J, Halldin C (2008b) Mapping of the norepinephrine transporter in the human brain using PET with (S,S)-[18F]FMeNER-D2. NeuroImage 42(2):474–482

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (National Institute for Biomedical Imaging and Bioengineering RO1 EB002630-29 (Fowler/Ding); National Institute on Drug Abuse, DA-06278, 9 R01 DA019062-31, 5R56DA019062-33 (Ding); NIH/NCRR U54 Interdisciplinary Research Consortium on Stress Self-Control and Addiction (Sinha/Neumeister); 1RL 1AA 017540-01; VA Merit Award; and National Institute of Diabetes and Digestive and Kidney Diseases (1R21DK090764-01A1, Ding/Sherwin), GlaxoSmithKline, and Pfizer. The author is grateful to the PET group at Brookhaven National Laboratory and the PET Center team at Yale University School of Medicine for their contributions and assistance. The author is also grateful to Drs. Sabri and Hesse and their team at the Department of Nuclear Medicine, University of Leipzig, for their collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Shin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, YS. (2021). Progress in PET Imaging of the Norepinephrine Transporter System. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics