Skip to main content

Nuclear Imaging in Frontotemporal Dementia

  • Chapter
  • First Online:
PET and SPECT in Neurology

Abstract

Frontotemporal dementia (FTD) covers a range of heterogeneous neurodegenerative syndromes, predominantly affecting the frontal and temporal lobes (frontotemporal lobar degeneration or FTLD). Most patients present with behavioural deficits, executive dysfunction and language difficulties. FTD presents as clinically recognized subtypes with behavioural manifestation (FTD-b) and primary progressive aphasia (PPA), which can be divided into semantic dementia (SD), progressive nonfluent aphasia (PNFA) and logopenic aphasia (LPA). FTD is a common type of dementia, particularly at younger age. The underlying neuropathological process of FTLD leads to the clinical phenotype and can be characterized roughly in tauopathy (FTD-TAU) and TAR DNA-binding protein (TDP-43) pathology. Genetics is an important causal factor for FTD, and genetic heterogeneity is reflected by the identification of mutations in causative genes. Diagnostic criteria have modest sensitivity, and it may be challenging to differentiate FTD from psychiatric disorders or other types of dementia, especially AD. Advances in molecular imaging have increased the accuracy of FTD diagnosis, and nuclear imaging techniques improve the understanding of the molecular basis of FTD, which is important to develop rational therapies. Although currently no effective treatment is available for FTD, early and correct diagnosis is necessary for adequate clinical management, because of prognostic implications and for genetic counselling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert M, DeCarli CS, DeKosky ST, de Leon MJ, Foster NL, Fox NC, Frank R, Frackowiak RS, Jack CR, Jagust WJ, Knopman DS, Morris JC, Petersen RC, Reiman E, Scheltens P, Small G, Soininen H, Thal L, Wahlund L-O, Thies W, Weiner M, Khachaturian Z (2005) The use of MRI and PET for clinical diagnosis of dementia and investigation of cognitive impairment: a consensus report. In: Neuroimaging Work Group of the Alzheimer’s Association Consensus Report, pp 1–15

    Google Scholar 

  • Alzheimer A (1911) Ãœber eigenartige krankheitsfälle des späteren alters. Zbl Ges Neurol Psych 4:356–385

    Google Scholar 

  • Anazodo UC, Finger E, Yin Ming Kwan B, Pavlosky W, Warrington JC, Günther M, Prato FS, Thiessen JD, St. Lawrencea KS (2017) Using simultaneous PET/MRI to compare the accuracy of diagnosing frontotemporal dementia by arterial spin labelling MRI and FDG-PET. Neuroimage Clin 17:405–414

    PubMed  PubMed Central  Google Scholar 

  • Archer HA, Smailagic N, John C, Holmes RB, Takwoingi Y, Coulthard EJ, Cullum S (2015) Regional cerebral blood flow single photon emission computed tomography for detection of Frontotemporal dementia in people with suspected dementia. Cochrane Database Syst Rev 6:CD010896

    Google Scholar 

  • Asghar M, Hinz R, Herholz K, Carter SF (2019) Dual-phase [18F]florbetapir in frontotemporal dementia. Eur J Nucl Med Mol Imaging 46(2):304–311

    PubMed  Google Scholar 

  • Bastin C, Feyers D, Souchay C, Guillaume B, Pepin JL, Lemaire C et al (2012) Frontal and posterior cingulate metabolic impairment in the behavioral variant of frontotemporal dementia with impaired autonoetic consciousness. Hum Brain Mapp 33(6):1268–1278

    PubMed  Google Scholar 

  • Bergeron D, Ossenkoppele R, Jr Laforce R (2018) Evidence-based interpretation of amyloid-beta PET results: a clinician’s tool. Alzheimer Dis Assoc Disord 32(1):28–34

    PubMed  Google Scholar 

  • Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S (2012) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53(1):59–71

    CAS  PubMed  Google Scholar 

  • Borroni B, Premi E, Agosti C, Alberici A, Garibotto V, Bellelli G et al (2009) Revisiting brain reserve hypothesis in frontotemporal dementia: evidence from a brain perfusion study. Dement Geriatr Cogn Disord 28(2):130–135

    CAS  PubMed  Google Scholar 

  • Borroni B, Grassi M, Premi E, Gazzina S, Alberici A, Cosseddu M et al (2012) Neuroanatomical correlates of behavioural phenotypes in behavioural variant of frontotemporal dementia. Behav Brain Res 235(2):124–129

    CAS  PubMed  Google Scholar 

  • Burke JF, Albin RL, Koeppe RA, Giordani B, Kilbourn MR, Gilman S et al (2011) Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 134(Pt 6):1647–1657

    PubMed  PubMed Central  Google Scholar 

  • Cha Y-HK, Jog MA, Kim Y-C, Chakrapani S, Kraman SM, Wang DJ (2013) Regional correlation between resting state FDG PET and pCASL perfusion MRI. J Cereb Blood Flow Metab 33:1909–1914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier P, Lavenu I, Defebvre L, Duhamel A, Lecouffe P, Pasquier F et al (2000) Alzheimer’s disease and frontotemporal dementia are differentiated by discriminant analysis applied to (99m) tc HmPAO SPECT data. J Neurol Neurosurg Psychiatry 69(5):661–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow TW, Graff-Guerrero A, Verhoeff NP, Binns MA, Tang-Wai DF, Freedman M et al (2011) Open-label study of the short-term effects of memantine on FDG-PET in frontotemporal dementia. Neuropsychiatr Dis Treat 7:415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther RA, Goedert M (2000) Abnormal tau-containing filaments in neurodegenerative diseases. J Struct Biol 130(2–3):271–279

    CAS  PubMed  Google Scholar 

  • Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924

    CAS  PubMed  Google Scholar 

  • DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dermaut B, Kumar-Singh S, Engelborghs S, Theuns J, Rademakers R, Saerens J et al (2004) A novel presenilin 1 mutation associated with pick’s disease but not beta-amyloid plaques. Ann Neurol 55(5):617–626

    CAS  PubMed  Google Scholar 

  • Diehl J, Grimmer T, Drzezga A, Riemenschneider M, Forstl H, Kurz A (2004) Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiol Aging 25(8):1051–1056

    CAS  PubMed  Google Scholar 

  • Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Forstl H et al (2007) Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 28(1):42–50

    CAS  PubMed  Google Scholar 

  • Dobert N, Pantel J, Frolich L, Hamscho N, Menzel C, Grunwald F (2005) Diagnostic value of FDG-PET and HMPAO-SPET in patients with mild dementia and mild cognitive impairment: metabolic index and perfusion index. Dement Geriatr Cogn Disord 20(2–3):63–70

    PubMed  Google Scholar 

  • Drzezga A, Grimmer T, Henriksen G, Stangier I, Perneczky R, Diehl-Schmid J et al (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. NeuroImage 39(2):619–633

    PubMed  Google Scholar 

  • Engler H, Santillo AF, Wang SX, Lindau M, Savitcheva I, Nordberg A et al (2008) In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 35(1):100–106

    PubMed  Google Scholar 

  • Fällmar D, Haller S, Lilja J, Danfors T, Kilander L, Tolboom N, Egger K, Kellner E, Croon PM, Verfaillie SCJ, van Berckel BNM, Ossenkoppele R, Barkhof F, Larsson E-M (2017) Arterial spin labeling-based Z-maps have high specificity and positive predictive value for neurodegenerative dementia compared to FDG-PET. Eur Radiol 27(10):4237–4246

    PubMed  PubMed Central  Google Scholar 

  • Fodero-Tavoletti MT, Brockschnieder D, Villemagne VL, Martin L, Connor AR, Thiele A et al (2012) In vitro characterization of [18F]-florbetaben, an Abeta imaging radiotracer. Nucl Med Biol 39(7):1042–1048

    CAS  PubMed  Google Scholar 

  • Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR et al (2007) FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain 130(Pt 10):2616–2635

    PubMed  Google Scholar 

  • Garraux G, Salmon E, Degueldre C, Lemaire C, Laureys S, Franck G (1999) Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. NeuroImage 10(2):149–162

    CAS  PubMed  Google Scholar 

  • Ghetti B, Oblak AL, Boeve BF, Johnson KA, Dickerson BC, Goedert M (2015) Invited review: frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 41(1):24–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65

    CAS  PubMed  Google Scholar 

  • Goldman JS, Farmer JM, Wood EM, Johnson JK, Boxer A, Neuhaus J et al (2005) Comparison of family histories in FTLD subtypes and related tauopathies. Neurology 65(11):1817–1819

    Article  CAS  PubMed  Google Scholar 

  • Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014

    Article  PubMed  PubMed Central  Google Scholar 

  • Greaves CV, Rohrer JD (2019) An update on genetic frontotemporal dementia. J Neurol 266(8):2075–2086

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimmer T, Diehl J, Drzezga A, Forstl H, Kurz A (2004) Region-specific decline of cerebral glucose metabolism in patients with frontotemporal dementia: a prospective 18F-FDG-PET study. Dement Geriatr Cogn Disord 18(1):32–36

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  • Harper L, Fumagalli GG, Barkhof F, Scheltens P, O’Brien JT, Bouwman F et al (2016) MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139:1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K et al (2002) Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med 43(1):21–26

    PubMed  Google Scholar 

  • Hirano S, Shinotoh H, Kobayashi T, Tsuboi Y, Wszolek ZK, Aotsuka A et al (2006) Brain acetylcholinesterase activity in FTDP-17 studied by PET. Neurology 66(8):1276–1277

    Article  CAS  PubMed  Google Scholar 

  • Hirano S, Shinotoh H, Shimada H, Aotsuka A, Tanaka N, Ota T et al (2010) Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 133(Pt 7):2058–2068

    Article  PubMed  Google Scholar 

  • Hsiung GY, DeJesus-Hernandez M, Feldman HH, Sengdy P, Bouchard-Kerr P, Dwosh E et al (2012) Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 135(Pt 3):709–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibach B, Poljansky S, Marienhagen J, Sommer M, Manner P, Hajak G (2004) Contrasting metabolic impairment in frontotemporal degeneration and early onset Alzheimer’s disease. NeuroImage 23(2):739–743

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Sakamoto S, Sasaki M, Kitagaki H, Yamaji S, Hashimoto M et al (1998) Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med 39(11):1875–1878

    CAS  PubMed  Google Scholar 

  • Jang YK, Lyoo CH, Park S, Oh SJ, Cho H, Oh M et al (2018) Head to head comparison of [(18)F] AV-1451 and [(18)F] THK5351 for tau imaging in Alzheimer’s disease and frontotemporal dementia. Eur J Nucl Med Mol Imaging 45(3):432–442

    Article  CAS  PubMed  Google Scholar 

  • Josephs KA, Duffy JR, Fossett TR, Strand EA, Claassen DO, Whitwell JL et al (2010) Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Arch Neurol 67(5):596–605

    Article  PubMed  Google Scholar 

  • Kapucu OL, Nobili F, Varrone A, Booij J, Vander Borght T, Nagren K et al (2009) EANM procedure guideline for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals, version 2. Eur J Nucl Med Mol Imaging 36(12):2093–2102

    Article  CAS  PubMed  Google Scholar 

  • Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG (2005) The evolution and pathology of frontotemporal dementia. Brain 128(Pt 9):1996–2005

    Article  PubMed  Google Scholar 

  • Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319

    Article  CAS  PubMed  Google Scholar 

  • Koeppe RA, Gilman S, Joshi A, Liu S, Little R, Junck L et al (2005) 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. J Nucl Med 46(6):936–944

    CAS  PubMed  Google Scholar 

  • Kotagal V, Lorincz MT, Bohnen NI (2012) A frontotemporal dementia-like syndrome mimicking postpartum depression detected by 18F fluorodeoxyglucose positron emission tomography. Clin Nucl Med 37(9):e223–e224

    Article  PubMed  Google Scholar 

  • Kreisl WC, Henter ID, Innis RB (2018) Imaging translocator protein as a biomarker of neuroinflammation in dementia. Adv Pharmacol (San Diego, CA) 82:163–185

    Article  CAS  Google Scholar 

  • Lanctot KL, Herrmann N, Ganjavi H, Black SE, Rusjan PM, Houle S et al (2007) Serotonin-1A receptors in frontotemporal dementia compared with controls. Psychiatry Res 156(3):247–250

    CAS  PubMed  Google Scholar 

  • Le Ber I, Guedj E, Gabelle A, Verpillat P, Volteau M, Thomas-Anterion C et al (2006) Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain 129(Pt 11):3051–3065

    PubMed  Google Scholar 

  • Leyton CE, Villemagne VL, Savage S, Pike KE, Ballard KJ, Piguet O, Hodges JR (2011) Subtypes of progressive aphasia: application of the international consensus criteria and validation using beta-amyloid imaging. Brain J Neurol 134(Pt 10):3030–3043

    Google Scholar 

  • Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7(3):128–134

    CAS  PubMed  Google Scholar 

  • Lockhart SN, Ayakta N, Winer JR, La Joie R, Rabinovici GD, Jagust WJ (2017) Elevated (18)F-AV-1451 PET tracer uptake detected in incidental imaging findings. Neurology 88(11):1095–1097

    PubMed  PubMed Central  Google Scholar 

  • Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE et al (2016) An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 4(1):58

    PubMed  PubMed Central  Google Scholar 

  • Mackenzie IR, Baker M, Pickering-Brown S, Hsiung GY, Lindholm C, Dwosh E et al (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129(Pt 11):3081–3090

    PubMed  Google Scholar 

  • Mackenzie IR, Rademakers R, Neumann M (2010) TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 9(10):995–1007

    CAS  PubMed  Google Scholar 

  • Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6):1094–1108

    Article  CAS  PubMed  Google Scholar 

  • McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ et al (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the work group on frontotemporal dementia and pick’s disease. Arch Neurol 58(11):1803–1809

    CAS  PubMed  Google Scholar 

  • McMurtray AM, Chen AK, Shapira JS, Chow TW, Mishkin F, Miller BL et al (2006) Variations in regional SPECT hypoperfusion and clinical features in frontotemporal dementia. Neurology 66(4):517–522

    CAS  PubMed  Google Scholar 

  • McNeill R, Sare GM, Manoharan M, Testa HJ, Mann DM, Neary D et al (2007) Accuracy of single-photon emission computed tomography in differentiating frontotemporal dementia from Alzheimer’s disease. J Neurol Neurosurg Psychiatry 78(4):350–355

    CAS  PubMed  Google Scholar 

  • Mendez MF, McMurtray A, Chen AK, Shapira JS, Mishkin F, Miller BL (2006) Functional neuroimaging and presenting psychiatric features in frontotemporal dementia. J Neurol Neurosurg Psychiatry 77(1):4–7

    CAS  PubMed  Google Scholar 

  • Mendez MF, Shapira JS, McMurtray A, Licht E, Miller BL (2007) Accuracy of the clinical evaluation for frontotemporal dementia. Arch Neurol 64(6):830–835

    PubMed  Google Scholar 

  • Mesulam MM (2001) Primary progressive aphasia. Ann Neurol 49(4):425–432

    CAS  PubMed  Google Scholar 

  • Miller BL, Gearhart R (1999) Neuroimaging in the diagnosis of frontotemporal dementia. Dement Geriatr Cogn Disord 10(Suppl 1):71–74

    PubMed  Google Scholar 

  • Miyoshi M, Shinotoh H, Wszolek ZK, Strongosky AJ, Shimada H, Arakawa R et al (2010) In vivo detection of neuropathologic changes in presymptomatic MAPT mutation carriers: a PET and MRI study. Parkinsonism Relat Disord 16(6):404–408

    PubMed  Google Scholar 

  • Morgan S, Kemp P, Booij J, Costa DC, Padayachee S, Lee L et al (2012) Differentiation of frontotemporal dementia from dementia with Lewy bodies using FP-CIT SPECT. J Neurol Neurosurg Psychiatry 83(11):1063–1070

    PubMed  Google Scholar 

  • Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49(3):390–398

    PubMed  Google Scholar 

  • Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51(6):1546–1554

    CAS  PubMed  Google Scholar 

  • Nobili F, Arbizu J, Bouwman F, Drzezga A, Agosta F, Nestor P, EANM-EAN Task Force for the Prescription of FDG-PET for Dementing Neurodegenerative Disorders (2018) European association of nuclear medicine and European academy of neurology recommendations for the use of brain (18) F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol 25(10):1201–1217

    CAS  PubMed  Google Scholar 

  • Padovani A, Agosti C, Premi E, Bellelli G, Borroni B (2007) Extrapyramidal symptoms in frontotemporal dementia: prevalence and clinical correlations. Neurosci Lett 422(1):39–42

    CAS  PubMed  Google Scholar 

  • Panegyres PK, Rogers JM, McCarthy M, Campbell A, Wu JS (2009) Fluorodeoxyglucose-positron emission tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study. BMC Neurol 9:41. 2377-9-41

    PubMed  PubMed Central  Google Scholar 

  • Perneczky R, Diehl-Schmid J, Drzezga A, Kurz A (2007) Brain reserve capacity in frontotemporal dementia: a voxel-based 18F-FDG PET study. Eur J Nucl Med Mol Imaging 34(7):1082–1087

    PubMed  Google Scholar 

  • Pick A (1892) Ãœber die beziehungen der senilen hirnatropie zur aphasie. Pragen Med Wochenschr 17:165–167

    Google Scholar 

  • Pickut BA, Saerens J, Marien P, Borggreve F, Goeman J, Vandevivere J et al (1997) Discriminative use of SPECT in frontal lobe-type dementia versus (senile) dementia of the Alzheimer’s type. J Nucl Med 38(6):929–934

    CAS  PubMed  Google Scholar 

  • Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL et al (2007) 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68(15):1205–1212

    CAS  PubMed  Google Scholar 

  • Rabinovici GD, Jagust WJ, Furst AJ, Ogar JM, Racine CA, Mormino EC et al (2008) Abeta amyloid and glucose metabolism in three variants of primary progressive aphasia. Ann Neurol 64(4):388–401

    PubMed  PubMed Central  Google Scholar 

  • Raczka KA, Becker G, Seese A, Frisch S, Heiner S, Marschhauser A et al (2010) Executive and behavioral deficits share common neural substrates in frontotemporal lobar degeneration – a pilot FDG-PET study. Psychiatry Res 182(3):274–280

    PubMed  Google Scholar 

  • Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9):2456–2477

    PubMed  PubMed Central  Google Scholar 

  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 11;58(11):1615–1621.

    Google Scholar 

  • Read SL, Miller BL, Mena I, Kim R, Itabashi H, Darby A (1995) SPECT in dementia: clinical and pathological correlation. J Am Geriatr Soc 43(11):1243–1247

    CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137

    CAS  PubMed  Google Scholar 

  • Rinne JO, Laine M, Kaasinen V, Norvasuo-Heila MK, Nagren K, Helenius H (2002) Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 58(10):1489–1493

    CAS  PubMed  Google Scholar 

  • Rosso SM, Donker Kaat L, Baks T, Joosse M, de Koning I, Pijnenburg Y et al (2003) Frontotemporal dementia in the Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126(Pt 9):2016–2022

    PubMed  Google Scholar 

  • Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G et al (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68(20):1718–1725

    CAS  PubMed  Google Scholar 

  • Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G et al (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7(2):129–135

    CAS  PubMed  Google Scholar 

  • Salmon E (2007) A review of the literature on neuroimaging of serotoninergic function in Alzheimer’s disease and related disorders. J Neural Transm 114(9):1179–1185

    CAS  PubMed  Google Scholar 

  • Salmon E, Garraux G, Delbeuck X, Collette F, Kalbe E, Zuendorf G et al (2003) Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. NeuroImage 20(1):435–440

    PubMed  Google Scholar 

  • Santillo AF, Skoglund L, Lindau M, Eeg-Olofsson KE, Tovi M, Engler H et al (2009) Frontotemporal dementia-amyotrophic lateral sclerosis complex is simulated by neurodegeneration with brain iron accumulation. Alzheimer Dis Assoc Disord 23(3):298–300

    PubMed  Google Scholar 

  • Sedaghat F, Gotzamani-Psarrakou A, Dedousi E, Arnaoutoglou M, Psarrakos K, Baloyannis I et al (2007) Evaluation of dopaminergic function in frontotemporal dementia using I-FP-CIT single photon emission computed tomography. Neurodegener Dis 4(5):382–385

    CAS  PubMed  Google Scholar 

  • Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82(5):476–486

    PubMed  Google Scholar 

  • Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P et al (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124(3):353–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Sanchez J, Dopper EG, Cohn-Hokke PE, Hukema RK, Nicolaou N, Seelaar H et al (2012) The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135(Pt 3):723–735

    PubMed  Google Scholar 

  • Sjogren M, Gustafson L, Wikkelso C, Wallin A (2000) Frontotemporal dementia can be distinguished from Alzheimer’s disease and subcortical white matter dementia by an anterior-to-posterior rCBF-SPET ratio. Dement Geriatr Cogn Disord 11(5):275–285

    CAS  PubMed  Google Scholar 

  • Smith R, Puschmann A, Scholl M, Ohlsson T, van Swieten J, Honer M et al (2016) 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 139(Pt 9):2372–2379

    PubMed  PubMed Central  Google Scholar 

  • Sokoloff L (1977) Relation between physiological function and energy metabolism in the central nervous system. J Neurochem 29(1):13–26

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    CAS  PubMed  Google Scholar 

  • Spina S, Schonhaut DR, Boeve BF, Seeley WW, Ossenkoppele R, O’Neil JP et al (2017) Frontotemporal dementia with the V337M MAPT mutation: tau-PET and pathology correlations. Neurology 88(8):758–766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spinelli EG, Mandelli ML, Miller ZA, Santos-Santos MA, Wilson SM, Agosta F et al (2017) Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol 81(3):430–443

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spreng RN, Drzezga A, Diehl-Schmid J, Kurz A, Levine B, Perneczky R (2011) Relationship between occupation attributes and brain metabolism in frontotemporal dementia. Neuropsychologia 49(13):3699–3703

    PubMed  Google Scholar 

  • Talbot PR, Lloyd JJ, Snowden JS, Neary D, Testa HJ (1998) A clinical role for 99mTc-HMPAO SPECT in the investigation of dementia? J Neurol Neurosurg Psychiatry 64(3):306–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teune LK, Bartels AL, de Jomg BM, Willemsen ATM, Eshuis SA, de Vries JJ et al (2010) Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov Disord 25(14):2395–2404

    PubMed  Google Scholar 

  • Tsai RM, Bejanin A, Lesman-Segev O, LaJoie R, Visani A, Bourakova V (2019) 18F-flortaucipir (AV-1451) tau PET in frontotemporal dementia syndromes. Alzheimers Res Ther 11:13

    PubMed  PubMed Central  Google Scholar 

  • Varrone A, Pappata S, Caraco C, Soricelli A, Milan G, Quarantelli M et al (2002) Voxel-based comparison of rCBF SPET images in frontotemporal dementia and Alzheimer’s disease highlights the involvement of different cortical networks. Eur J Nucl Med Mol Imaging 29(11):1447–1454

    PubMed  Google Scholar 

  • Verfaillie SCJ, Adriaanse SM, Binnewijzend MAA, Benedictus MR, Ossenkoppele R, Wattjes MP, Pijnenburg YAL, van der Flier WM, Lammertsma AA, Kuijer JPA, Boellaard R, Scheltens P, van Berckel BNM, Barkhof F (2015) 2015. Cerebral perfusion and glucose metabolism in Alzheimer’s disease and frontotemporal dementia: two sides of the same coin? Eur Radiol 25(10):3050–3059

    PubMed  PubMed Central  Google Scholar 

  • Vieira RT, Caixeta L, Machado S, Silva AC, Nardi AE et al. (2013) Epidemiology of early-onset dementia: a review of the literature. Clin Pract Epidemiol Ment Health 9:88–95.

    Google Scholar 

  • Vijverberg EG, Wattjes MP, Dols A, Krudop WA, Möller C, Peters A, Kerssens CJ, Gossink F, Prins ND, Stek ML, Scheltens P, van Berckel BN, Barkhof F, Pijnenburg YA (2016) Diagnostic accuracy of MRI and additional [18F]FDG-PET for behavioral variant frontotemporal dementia in patients with late onset behavioral changes. J Alzheimers Dis 53(4):1287–1297

    PubMed  Google Scholar 

  • Villemagne VL, Ong K, Mulligan RS, Holl G, Pejoska S, Jones G et al (2011) Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med 52(8):1210–1217

    PubMed  Google Scholar 

  • Xia CF, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D et al (2013) [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement 9(6):666–676

    PubMed  Google Scholar 

  • Yoo HS, Chung SJ, Jong S, Kim SJ, Oh JS, Kim JS, Ye BS, Sohn YH, Lee PH (2018) The role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and frontotemporal dementia in the early stage. Eur J Nucl Med Mol Imaging 45(9):1585–1595

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fransje E. Reesink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reesink, F.E., Stormezand, G.N., Dierckx, R.A.J.O., De Deyn, P.P. (2021). Nuclear Imaging in Frontotemporal Dementia. In: Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Leenders, K.L. (eds) PET and SPECT in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-53168-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53168-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53167-6

  • Online ISBN: 978-3-030-53168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics