Skip to main content

Data Acquisition in Geographic Information Systems

  • Chapter
Springer Handbook of Geographic Information

Part of the book series: Springer Handbooks ((SHB))

Abstract

Geographic information systems (GIS) receive data from many sources that are different in technology, geographic coverage, date of capture, and accuracy – to mention few categories. The vast majority of the today's topographical and GIS-data are captured from mobile and possibly autonomous platforms that operate from the air, on the ground (also indoors) or on the water and that are equipped with optical sensors. Although the palette of optical sensors is rather large the most useful for mapping purposes falls into two categories. First are the passive sensors such as digital cameras in frame or line configuration. The main technological concepts of these sensors are introduced in Optical Sensors together with Lidar that serves the acquisition of detailed terrain structure in natural areas. The optical acquisition is supported by trajectory determination through the combined use of integrated navigation technology, which main concepts are outlined in Navigation Sensors. The geometrical principals of 3-D restitution of the scene are described first in Photogrammetry for the case of frame imagery only, later in Sensor Fusion for active sensors and integrated approaches. An overview of Mapping Products concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Wolf, P.: Elements of Photogrammetry. McGraw-Hill, New York (1974)

    Google Scholar 

  • Kraus, K.: Photogrammetry – Geometry from Images and Laser Scans. Walter de Gruyter, Berlin, Boston (2007)

    Book  Google Scholar 

  • Dorstel, C., Jacobsen, K., Stallmann, D.: DMC – Photogrammetric accuracy – Calibration aspects and generation of synthetic DMC images. In: Proc. Opt. 3-D Meas. Tech. Zurich, vol. VI, pp. 74–82. (2003)

    Google Scholar 

  • Ladstadter, R., Tschemmernegg, H., Gruber, M.: Calibrating the ultracam aerial camera systems, an update. In: Proc. Int. Calibration Orientat. Workshop, EuroCOW, p. 8. (2010)

    Google Scholar 

  • Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (1992)

    Google Scholar 

  • Ehlers, M., Klonus, S., Astrand, P., Rosso, P.: Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 1, 25–45 (2010)

    Article  Google Scholar 

  • Petri, G.: Deja vu – The configurations of the new airborne digital imagers are all rooted in the distant past! GeoInformatics 3(5), 48–51 (2000)

    Google Scholar 

  • Petri, G., Walker, S.: Airborne digital imaging technology: A new overview. Photogramm. Rec. 22, 203–225 (2007)

    Article  Google Scholar 

  • Wehr, A., Lohr, U.: Airborne laser scanning an introduction and overview. ISPRS J. Photogramm. Remote Sens. 54(2/3), 68–82 (1999)

    Article  Google Scholar 

  • Hug, C.: The scanning laser altitude and reflectance sensor – An instrument for efficient 3D terrain survey. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 30, pp. 100–107. (1994)

    Google Scholar 

  • Lohr, U., Beraldin, A., Blais, F.: Laser scanning technology. In: Airborne and Terrestrial Laser Scanning. Whittles Publishing, Dunbeath (2010)

    Google Scholar 

  • Schaer, P.: In-flight Quality Assessment and Data Processing for Airborne Laser Scanning. PhD thesis. The Swiss Federal Institute of Technology, Lausanne (2009)

    Google Scholar 

  • Carabajal, C., Harding, D., Luthcke, S.B., Fong, W., Rowton, S., Frawley, J.: Processing of shuttle laser altimeter range and return pulse energy data in support of SLA-02. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 32-A4, pp. 269–277. (1999)

    Google Scholar 

  • Spikes, V., Csatho, B., Whillans, I.: Airborne laser profiling of Antartic ice stream for change detection. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 32-3-W14, p. 7. (1999)

    Google Scholar 

  • Geiger, A., Kahle, H.G., Limpach, P.: Airborne Laser Profiling. ETH Research Database 6120. Swiss Federal Institute of Technology, ETH Zurich, Zurich (2009)

    Google Scholar 

  • Morin, K.: Calibration of Airborne Laser Scanners. M.Sc.. Univ. Calgary, Calgary (2002). UCGE Report No. 20179

    Google Scholar 

  • Glennie, C., Lichti, D.: Static calibration and analysis of the velodyne HDL-64E S2 for high accuracy mobile scanning. Remote Sens. 2, 1610–1624 (2010)

    Article  Google Scholar 

  • Glennie, C., Kusari, A., Facchin, A.: Calibration and stability analysis of the VLP-16 laser scanner. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-3/W4, pp. 55–60. (2016) https://doi.org/10.5194/isprsarchives-XL-3-W4-55-2016

    Chapter  Google Scholar 

  • Betz, J.: Engineering Satellite-Based Navigation and Timing. Wiley, IEEE Press, Hoboken, New Jersey (2016)

    Google Scholar 

  • Satirapod, C., Homniam, P.: GPS precise point positioning software for ground control point establishment in remote sensing applications. J. Surv. Eng. 132(1), 11–14 (2006)

    Article  Google Scholar 

  • Titterton, D., Weston, J.: Strapdown Inertial Navigation Technology (1997). Part of IEE radar, sonar, navigation and avionics series, Stevenage, U.K., all the details in strapdown inertial navigation, attention: some mistakes in equastions

    Google Scholar 

  • Jekeli, C.: Inertial Navigation Systems with Geodetic Applications. Walter de Gruyter, Berlin (2001)

    Book  Google Scholar 

  • Andersson, R., Bilger, H., Stedman, G.: Sagnac effect: A century of Earth-rotated interferometers. Am. J. Phys. 62, 975–985 (1994)

    Article  Google Scholar 

  • Khaghani, M., Skaloud, J.: Application of vehicle dynamic modeling in UAVs for precise determination of exterior orientation. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B3, pp. 827–831. (2016) https://doi.org/10.5194/isprsarchives-XLI-B3-827-2016

    Chapter  Google Scholar 

  • Khaghani, M., Skaloud, J.: Assesment of VDM-based autonomous navigation of a UAV under operational conditions. Robot. Auton. Syst. 106, 152–154 (2018). minor review pending

    Article  Google Scholar 

  • Weiss, J., Kee, D.: A direct performance comparison between loosely coupled and tightly coupled GPS/INS integration techniques. In: Proc. 51st Annu. Meet. Inst. Navig., Colorado Springs, pp. 537–544. (1995)

    Google Scholar 

  • Wei, M., Schwarz, K.P.: Testing a decentralized filter for GPS/INS integration. In: Proc. IEEE Symp. Position Locat. Navig. (1990)

    Google Scholar 

  • Scherzinger, B.: Precise robust positioning with inertially aided RTK. J. Inst. Navig. 53(2), 73–83 (2006)

    Article  Google Scholar 

  • Greenspan, R.: Inertial navigation technology from 1970 to 1995. J. Inst. Navig. 42, 165–186 (1995)

    Article  Google Scholar 

  • Legat, K.: Approximate direct georeferencing in national coordinates. ISPRS J. Photogramm. Remote Sens. 60, 239–255 (2006)

    Article  Google Scholar 

  • Skaloud, J., Legat, K.: Theory and reality of direct georeferencing in national coordinates. ISPRS J. Photogramm. Remote Sens. 63, 272–282 (2008)

    Article  Google Scholar 

  • Rehak, M., Skaloud, J.: Fixed-wing micro aerial vehicle for accurate corridor mapping. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-1/W4, pp. 23–31. (2015) https://doi.org/10.5194/isprsannals-II-1-W1-23-2015

    Chapter  Google Scholar 

  • Cramer, M., Stallmann, D.: System calibration for direct georeferencing. In: ISPRS Comm. III Symp. Photogramm. Comput. Vis., Graz, p. 6. (2002)

    Google Scholar 

  • Kruck, E.: Combined IMU and sensor calibration with BINGO-F. In: Proc. OEEPE Workshop Integr. Sens. Orientat. pp. 84–108. (2001). CD-ROM

    Google Scholar 

  • Skaloud, J., Schaer, P.: Towards a more rigorous boresight calibration. In: ISPRS Int. Workshop Theory Technol. Real. Inert. GPS Sens. Orientat., Castelldefels (2003)

    Google Scholar 

  • Cosandier, D.: Generating a Digital Elevation Model and Orthomosaic from Pushbroom Imagery. Univ. Calgary, Calgary (1999). UCGE Report No. 20133

    Google Scholar 

  • Tempelmann, U., Hinsken, L.: Triangulation of ADS40 pushbroom image blocks – Not much different from classical frame blocks? In: SGPBF Annu. Meet. (2005)

    Google Scholar 

  • Burman, H.: Calibration and Orientation of Airborne Image and Laser Scanner Data Using GPS and INS. PhD thesis. Royal Institute of Technology, Stockholm (2000)

    Google Scholar 

  • Kager, H.: Discrepancies between overlapping laser scanning strips – Simultaneous fitting of aerial laser scanner strips. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 35, pp. 555–560. (2004)

    Google Scholar 

  • Morin, K., El-Sheimy, N.: Post-mission adjustment of airborne laser scanning data. In: FIG XXII Int. Congr. Washington, p. 12. (2002)

    Google Scholar 

  • Friess, P.: Toward a rigorous methodology for airborne laser mapping. In: Proc. EuroCOW, p. 7. (2006). on CDROM

    Google Scholar 

  • Skaloud, J., Lichti, D.: Rigorous approach to bore-sight self calibration in airborne laser scanning. ISPRS J. Photogramm. Remote Sens. 61, 47–59 (2006)

    Article  Google Scholar 

  • Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135 (1981)

    Article  Google Scholar 

  • Hartley, R.I.: In defence of the 8-point algorithm. IEEE Trans. Pattern Anal. 19(6), 580–593 (2012)

    Article  Google Scholar 

  • Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vis. 37(2), 151–172 (2000)

    Article  MATH  Google Scholar 

  • Jazayeri, I., Fraser, C.: Interest operators for feature-based matching in close range photogrammetry. Photogramm. Rec. 25(129), 24–41 (2010)

    Article  Google Scholar 

  • Haralick, R.M., Shapiro, L.G.: Computer and Robot Visions. Addison-Wesley, Reading (1992)

    Google Scholar 

  • Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centers of circular features. In: Proc. ISPRS Intercomm. Workshop Fast Process. Photogramm. Data, pp. 281–305. (1987)

    Google Scholar 

  • Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vis. Conf. pp. 147–151. (1988)

    Google Scholar 

  • Lowe, D.G.: Distinctive image features from scale invariant key points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  • Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  • Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  • Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–770 (2004)

    Article  Google Scholar 

  • Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010)

    MATH  Google Scholar 

  • Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  • Haala, N.: Dense Image Matching Final Report, pp. 115–145 (2014). Tech. Rep., EuroSDR Official Publication No. 64

    Google Scholar 

  • Colomina, I., Blazquez, M.: A unified approach to static and dynamic modeling in photogrammetry and remote sensing. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 35-B1, pp. 178–183. (2004)

    Google Scholar 

  • Kerstling, A.P., Habib, A., Bang, K.I., and Skaloud, J.: Automated approach for rigorous light detection and ranging system calibration without preprocessing and strict terrain coverage requirements. Opt. Eng. 51(7), 076201 (2012)

    Article  Google Scholar 

  • Strasdat, H., Montiel, J., Davison, A.: Real-time monocular slam: Why filter? In: IEEE Int. Conf. Robot. Autom. (ICRA), pp. 2657–2664. (2010)

    Google Scholar 

  • Cucci, D.A., Rehak, M., Skaloud, J.: Bundle adjustment with raw inertial observations in UAV applications. ISPRS J. Photogramm. Eng. Remote Sens. 130, 1–12 (2017)

    Article  Google Scholar 

  • Freyer, J., Brown, D.: Lens distortion for close-range photogrammetry. Photogramm. Eng. Remote Sens. 52, 51–58 (1986)

    Google Scholar 

  • Gruen, A.: The accuracy potential of the modern bundle block adjustment in aerial photogrammetry. Photogramm. Eng. Remote Sens. 48, 45–54 (1982)

    Google Scholar 

  • Rehak, M., Skaloud, J.: Time synchronization of consumer cameras on micro aerial vehicles. ISPRS J. Photogramm. Remote Sens. 123(1), 114–123 (2017)

    Article  Google Scholar 

  • Förstner, W., Wrobel, B.: Mathematical concepts in photogrammetry. In: McGlone, J., Mikhail, E. (eds.) Manual of Photogrammetry, 5th edn., pp. 15–180. ASPRS, Bethesda (2004)

    Google Scholar 

  • Bjerhammar, A.: Theory of Errors and Generalized Matrix Inverses. Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  • Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g\({}^{2}\)o: A general framework for graph optimization. In: IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3607–3613. IEEE, New York (2011)

    Google Scholar 

  • Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  • Cucci, D., Skaloud, J.: On inertial measurements in dynamics networks. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W5, pp. 549–557. (2019)

    Google Scholar 

  • Hoffman, O., Nave, P., Ebner, H.: DPS – A digital photogrammetric system for producing digital elevation models and orthophotos by means of linear array scanner imagery. In: The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 24, pp. 216–227. (1982)

    Google Scholar 

  • Cramer, M.: The ADS40 Vaihingen/Enz geometric performance test. ISPRS J. Photogramm. Remote Sens. 60, 363–374 (2006)

    Article  Google Scholar 

  • Ebner, H.: Self calibrating block adjustment. In: XIIIth Congr. Int. Soc. Photogramm. Com. V., Stockholm (1978)

    Google Scholar 

  • Filin, S., Vosselman, G.: Adjustment of airborne laser altimetry strips. In: ISPRS XXth Congr. Geo-Imagery Bridg. Cont. pp. 285–289. (2004)

    Google Scholar 

  • Glira, F., Pfeifer, N., Mandelburger, G.: Hybrid orientation of airborne lidar point clouds and aerial images. In: he International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-2/W5, pp. 567–574. (2019)

    Google Scholar 

  • Filin, S.: Recovery of systematic biases in laser altimetry data using natural surfaces. Photogramm. Eng. Remote Sens. 69(11), 1235–1242 (2003)

    Article  Google Scholar 

  • El-Sheimy, N., Valeo, C., Habib, A.: Digital Terrain Modeling. Artech House, Norwood (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Skaloud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Skaloud, J., Cramer, M., Haala, N. (2022). Data Acquisition in Geographic Information Systems. In: Kresse, W., Danko, D. (eds) Springer Handbook of Geographic Information. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-53125-6_9

Download citation

Publish with us

Policies and ethics