Skip to main content

Abstract

This chapter consists of two main parts, an introduction to adjustment techniques (Sects. 2.1 and 2.2) and an overview of geostatistical methods (Sect. 2.3). The content is related to other chapters of the handbook. In particular, the adjustment technology is a foundation of many data-capture methods, and geostatistical methods are applied in marine GIS and geology.

Section 2.1 starts with an introduction to the Gauss–Markov model, discusses error propagation, and explains the role of covariance. The positional accuracy improvement, a key method for the reduction of geometrical errors present in old paper maps, is the main topic of the remainder of Sects. 2.1 and 2.2. Many related topics of positional accuracy improvement are addressed, such as datum and conformal transformation, and geometric constraints are also considered.

Section 2.3 gives a brief introduction to geostatistical analysis and modeling and introduces two approaches: universal kriging and regression kriging. Variograms for investigation and modeling are explained. Both have been applied to map benthic biotopes within the German Exclusive Economic Zone (EEZ) and coastal areas of the North Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Mikhail, E., Ackermann, F.: Observations and Least Squares. Univ. Press America, New York (1976)

    Google Scholar 

  • Niemeier, W.: Ausgleichungsrechnung. De Gruyter, Berlin (2002)

    Google Scholar 

  • Conformal map. http://en.wikipedia.org/wiki/Conformal_map

  • Student’s t-test. http://en.wikipedia.org/wiki/T-test

  • . http://en.wikipedia.org/wiki/Graph_(mathematics)

  • Event-driven process chain. http://en.wikipedia.org/wiki/Event-driven_process_chain

  • Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall. 52(6), 119–139 (1951)

    Google Scholar 

  • Matheron, G.: Les variables régionalisées et leur estimation. Masson, Paris (1965)

    Google Scholar 

  • Matheron, G.: The Theory of Regionalized Variables and Its Applications. Les Cahiers du Centre de Morphologie Mathematique in Fontainebleu, Paris (1971)

    Google Scholar 

  • Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., Dove, D.: Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont Shelf Res 84, 107–119 (2014)

    Article  Google Scholar 

  • Jerosch, K.: Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. J. Mar. Syst. 127, 5–13 (2013)

    Article  Google Scholar 

  • Meilianda, E., Huhn, K., Alfian, D., Bartholomae, A.: Application of multivariate geostatistics to investigate the surface sediment distribution of the high-energy and shallow Sandy Spiekeroog shelf at the German bight, southern North Sea. Open J. Mar. Sci. 2(04), 103 (2012)

    Article  Google Scholar 

  • Guarini, J.M., Blanchard, G.F., Bacher, C., Gros, P., Riera, P., Richard, P., Gouleau, D., Galois, R., Prou, J., Sauriau, P.G.: Dynamics of spatial patterns of microphytobenthic biomass: inferences from a geostatistical analysis of two comprehensive surveys in Marennes-Oléron Bay (France). Mar. Ecol. Prog. Ser. 166, 131–141 (1998)

    Article  Google Scholar 

  • Maynou, F.: The application of geostatistics in mapping and assessment of demersal resources, Nephropsnorvegicus in the northwestern Mediterranean: a case study. Sci. Mar. 62(1), 117–133 (1998)

    Google Scholar 

  • Sørensen, P.S.: Spatial Distribution Maps for Benthic Communities. Institute of Mathematical Modelling, Technical Univ. of Denmark, Lyngby (2000)

    Google Scholar 

  • Souza, F.M.D., Gilbert, E.R., Camargo, M.G.D., Pieper, W.W.: The spatial distribution of the subtidal benthic macrofauna and its relationship with environmental factors using geostatistical tools: a case study in Trapandé Bay, southern Brazil. Zoologia 30(1), 55–65 (2013)

    Article  Google Scholar 

  • Aidoo, E.N., Mueller, U., Goovaerts, P., Hyndes, G.A.: Evaluation of geostatistical estimators and their applicability to characterise the spatial patterns of recreational fishing catch rates. Fish. Res. 168, 20–32 (2015)

    Article  Google Scholar 

  • Petitgas, P.: Geostatistics for fish stock assessments: a review and an acoustic application. ICES J. Mar. Sci. 50(3), 285–298 (1993)

    Article  Google Scholar 

  • Petitgas, P.: Geostatistics in fisheries survey design and stock assessment: models, variances and applications. Fish Fish. 2(3), 231–249 (2001)

    Article  Google Scholar 

  • Petitgas, P.: Geostatistics and their applications to fisheries survey data: a history of ideas, 1990–2007. In: Computers in Fisheries Research, pp. 191–224. (2009)

    Chapter  Google Scholar 

  • Petitgas, P., Woillez, M., Rivoirard, J., Renard, D., Bez, N.: Handbook of Geo-statistics in R for Fisheries and Marine Ecology. ICES cooperative research report, vol. 338. (2017)

    Google Scholar 

  • Rufino, M.M., Stelzenmüller, V., Maynou, F., Zauke, G.P.: Assessing the performance of linear geostatistical tools applied to artificial fisheries data. Fish. Res. 82(1–3), 263–279 (2006)

    Article  Google Scholar 

  • Stelzenmüller, V., Maynou, F., Bernard, G., Cadiou, G., Camilleri, M., Crec’hriou, R., Criquet, G., Dimech, M., Esparzad, O., Higgins, R., Pérez-Ruzafad, A., Lenfant, P.: Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar. Pollut. Bull. 56(12), 2018–2026 (2008)

    Article  Google Scholar 

  • Vaz, S., Martin, C.S., Ernande, B., Coppin, F., Harrop, S., Carpentier, A.: Using geostatistics to quantify annual distribution and aggregation patterns of fishes in the eastern English Channel. In: Proc ICES AnnuSciConf (Aberdeen), pp. 20–24. (2005)

    Google Scholar 

  • Johnston, K., VerHoef, J.M., Krivoruchko, K., Lucas, N.: Using ArcGIS Geostatistical Analyst. ESRI, Redlands (2001)

    Google Scholar 

  • Wackernagel, H.: Multivariate Geostatistics: An introduction with Applications. Springer, Berlin, Heidelberg, New York (2003)

    Book  MATH  Google Scholar 

  • Hengl, T.: A Practical Guide to Geostatistical Mapping of Environmental Variables. EUR 22904 EN-scientific and technical research series. Office for Official Publications of the European Communities, Luxemburg (2007)

    Google Scholar 

  • Hengl, T., Heuvelink, G.B., Stein, A.: Comparison of Kriging with External Drift and Regression Kriging. ITC, Enschede (2003)

    Google Scholar 

  • Hengl, T., Heuvelink, G.B., Stein, A.: A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1–2), 75–93 (2004)

    Article  Google Scholar 

  • Hengl, T., Sierdsema, H., Radović, A., Dilo, A.: Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecol. Model. 220(24), 3499–3511 (2009)

    Article  Google Scholar 

  • Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J.: Further results on prediction of soil properties from terrain attributes: heterotropic cokriging and regression-kriging. Geoderma 67, 215–226 (1995)

    Article  Google Scholar 

  • Gribov, A., Krivoruchko, K., VerHoef, J.M.: Modeling the semivariogram: New approach, methods comparison, and simulation study. In: Coburn, T.C., Yarus, J.M., Chambers, R.L. (eds.) Stochastic Modeling and Geostatistics: Principles Methods, and Case Studies, Volume II AAPGcomputer applications in geology, vol. 5, pp. 45–57. (2006)

    Google Scholar 

  • Lawrence, J., Southworth, S., Sutphin, D.M., Rubis, G.A., Schuenemeyer, J.H., Burton, W.C.: Validation of the relation between structural patterns in fractured bedrock and structural information interpreted from 2D-Variogram maps of water-well yields in Loudoun county, Virginia. Nat. Resour. Res. 13(4), 255–264 (2004)

    Article  Google Scholar 

  • Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., Konopka, A.E.: Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 58(5), 1501–1511 (1994)

    Article  Google Scholar 

  • Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0056. Official Journal of the European Union L 164/19

  • Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1495097018132&uri=CELEX:32017D0848. Official Journal of the European Union L125/43

  • Council Directive 92/43/EEC of 21 May 1992on the conservation of natural habitats and of wild fauna and flora

    Google Scholar 

  • Bildstein, T., Fiorentino, D., Günther, C.P., Pesch, R., Rückert, P., Schröder, W., Schuchardt, B.: Cluster 6 Biotopkartierung: Endberichtsentwurf – Teil Nordsee (2014). unveröff. Bericht i. A. des Bundesamtes für Naturschutz (BfN)

    Google Scholar 

  • Pesch, R., Propp, C., Darr, A., Bartholomä, A., Beisiegel, K., Bildstein, T., Fiorentino, D., Hass, C., Holler, P., Lambers-Huesmann, M., Richter, P., Papenmeier, S., Günther, C.-P., Schiele, K., Schuchardt, B., Schwarzer, K., Tauber, F., Zeiler, M., Zettler, M.: Progress in marine biotope mapping in Germany. In: v. Nordheim, H., Wollny Goerke, K. (eds.) Progress in Marine Conservation in Europe 2015 BfN-Skripten, vol. 451, pp. 115–120. Bundesamt für Naturschutz, Bonn (2016)

    Google Scholar 

  • Finck, P., Heinze, S., Raths, U., Riecken, U., Ssymank, A.: Rote Liste der gefährdeten Biotoptypen Deutschlands. Dritte fortgeschriebene Fassung 2017. Bundesamt für Naturschutz, Bonn (2017)

    Google Scholar 

  • Austin, M.: Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol. Model. 200(1–2), 1–19 (2007)

    Article  Google Scholar 

  • Dormann, C.F., Schymanski, S.J., Cabral, J., Chuine, I., Graham, C., Hartig, F., Kearney, M., Morin, X., Römermann, C., Schröder, B., Singer, A.: Correlation and process in species distribution models: bridging a dichotomy. J Biogeogr. 39(12), 2119–2131 (2012)

    Article  Google Scholar 

  • Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

    Article  Google Scholar 

  • Guisan, A., Thuiller, W.: Predicting species distribution: offering more than simple habitat models. Ecol Letters 8(9), 993–1009 (2005)

    Article  Google Scholar 

  • Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P., Richardson, A.J.: Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Glob. Ecol. Biogeogr. 20, 789–802 (2011)

    Article  Google Scholar 

  • Robinson, N.M., Nelson, W.A., Costello, M.J., Sutherland, J.E., Lundquist, J.C.: A systematic review of marine-based Species Distribution Models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4(421), 1–11 (2017). https://doi.org/10.3389/fmars.2017.00421

    Article  Google Scholar 

  • Neumann, H., Diekmann, R., Emeis, K.C., Kleeberg, U., Moll, A., Kröncke, I.: Full-coverage spatial distribution of epibenthic communities in the south-eastern North Sea in relation to habitat characteristics and fishing effort. Mar. Environ. Res. 130, 1–11 (2017)

    Article  Google Scholar 

  • Pesch, R., Pehlke, H., Jerosch, K., Schröder, W., Schlüter, M.: Using decision trees to predict benthic communities within and near the German Exclusive Economic Zone (EEZ) of the North Sea. Environ Monit Assess 136(1–3), 313–325 (2008)

    Google Scholar 

  • Singer, A., Schückel, U., Beck, M., Bleich, O., Brumsack, H.J., Freund, H., Geimecke, C., Lettmann, K.A., Millat, G., Staneva, J., Vanselow, A., Westphal, H., Wolff, J.O., Wurpts, A., Kröncke, I.: Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s–2009). Mar. Ecol. Prog. Ser. 551, 13–30 (2016)

    Article  Google Scholar 

  • BioConsul: Kleinmaßstäbige Abgrenzung des nach §30 BNatSchG geschützten Biotoptyps “Artenreiche Kies-, Grobsand- und Schillgründe” in den FFH-Gebieten der AWZ der Nordsee. Bundesamt für Naturschutz, Vilm (2017). Erstellt im Rahmen des FuE-Vorhabens des BfN: Erfassung, Bewertung und Kartierung benthischer Arten und Biotope (AWZ-P4, Benthos)

    Google Scholar 

  • Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  • BfN: Artenreiche Kies-, Grobsand- und Schillgründe im Meeres- und Küstenbereich – Definition und Kartieranleitung Kies-, Grobsand- & Schillgründe (2011). http://www.bfn.de/habitatmare/de/downloads-marine-biotope.php, Accessed 30 May 2012

  • Fiorentino, D., Pesch, R., Guenther, C.P., Gutow, L., Holstein, J., Dannheim, J., Ebbe, B., Bildstein, T., Schroeder, W., Schuchardt, B., Brey, T., Wiltshire, K.H.: A ‘fuzzy clustering’ approach to conceptual confusion: how to classify natural ecological associations. Mar Ecol. Prog. Ser. 584, 17–30 (2017). https://doi.org/10.3354/meps12354

    Article  Google Scholar 

  • R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2015). https://www.R-project.org/

    Google Scholar 

  • Laurer, W.-U., Naumann, M., Zeiler, M.: Sedimentverteilung auf dem Meeresboden in der deutschen Nordsee nach der Klassifikation von FIGGE (1981). Geopotential Deutsche Nordsee, LBEG – BSH – BGR, Hannover/Hamburg (2014)

    Google Scholar 

  • S. Schönrock: Comparison of predictive statistical methods for full coverage mapping of benthic soft bottom communities within the Exclusive Economic Zone (EEZ) of the German North Sea, Masters Thesis (Beuth University of Applied Sciences, Berlin 2016), originally written in German

    Google Scholar 

  • BfN: Karte 3: Verteilung der abgrenzungsrelevanten FFH-Schutzgüter sowie die FFH-Gebietsmeldungen “Doggerbank” (DE 1003-301); “Sylter Außenriff” (DE 1209-301); “Borkum Riffgrund” (DE 2104-301) in der AWZ der deutschen Nordsee; Stand 28.04.2004: 1 (2004)

    Google Scholar 

  • Populus, J., Vasquez, M., Albrecht, J., Manca, E., Agnesi, S., Al Hamdani, Z., Andersen, J., Annunziatellis, A., Bekkby, T., Bruschi, A., Doncheva, V., Drakopoulou, V., Duncan, G., Inghilesi, R., Kyriakidou, C., Lalli, F., Lillis, H., Mo, G., Muresan, M., Salomidi, M., Sakellariou, D., Simboura, M., Teaca, A., Tezcan, D., Todorova, V., Tunesi, L.: EUSeaMap, A European broad-scale seabed habitat map (2017). https://doi.org/10.13155/49975

    Book  Google Scholar 

  • J. Wood (1996): The Geomorphological characterisation of Digital Elevation Models, Ph.D. thesis (Department of Geography, University of Leicester 1996)

    Google Scholar 

  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8(7), 1991–2007 (2015)

    Article  Google Scholar 

  • Zhao, B., Cai, Q.: Geostatistical analysis of chlorophyll a in freshwater ecosystems. J. Freshw. Ecol. 19(4), 613–621 (2004)

    Article  Google Scholar 

  • Schönrock, S., Schuchardt, B., Bildstein, T., Kreutle, A., Heinicke, K., Pesch, R.: Geostatistical Applications in a Marine Benthic Biological Context. – Kresse, W., Danko, D. M. (Eds.): Springer Handbook of Geographic Information. Springer (2020)

    Google Scholar 

Download references

Acknowledgements

The works presented in this study were produced within a national biotope mapping project coordinated and financed by the German Federal Agency for Nature Conservation (Bundesamt für Naturschutz, BfN). Several other institutions provided measurement data on macrozoobenthos and sediments as well as full coverage data on sediments and bathymetry. These include BioConsult Schuchardt & Scholle GbR, the Alfred-Wegener-Institute for Polar and Marine Research (Bremerhaven), the Federal Maritime Hydrographic Office (Bundesamt für Seeschiffahrt und Hydrographie BSH), Leibniz Institute for Baltic Sea Research (Institut für Ostseeforschung, Warnemünde) and the federal states environmental authorities Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein (LLUR) and Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gielsdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Gielsdorf, F., Schönrock, S., Pesch, R. (2022). Mathematics and Statistics. In: Kresse, W., Danko, D. (eds) Springer Handbook of Geographic Information. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-53125-6_2

Download citation

Publish with us

Policies and ethics