Abstract
This chapter highlights the development of manganese oxide (MnO2) as cathode material in rechargeable zinc ion batteries (ZIBs). Recently, renewed interest in ZIBs has been witnessed due to the demand for economical, safe, and high-performance rechargeable batteries which is the current limitation of the widely used rechargeable lithium ion batteries (LIBs). ZIBs in comparison with LIBs have a high volumetric capacity and an abundance of raw material. ZIBs are also non-toxic and safe. Besides, production of ZIBs does not require sophisticated equipment such as vacuum technology. In fact, ZIBs can be manufactured even under ambient atmosphere. Of the interesting cathode materials for ZIBs such as V2O5 and Prussian Blue analogs, MnO2 attracts much research attention due to its rich electrochemistry, size, morphology, phase, and structure. Similar to Zn, MnO2 is plentiful and safe. It is evident that when paired up with zinc, MnO2 can deliver a high theoretical capacity of 308 mAh g−1. However, the inherent poor conductivity and poor cyclability of this material are common drawbacks for its potential usage.
Keywords
- Manganese oxide
- Electrochemical energy storage
- Rechargeable zinc-ion battery
- Aqueous electrolyte
- Non-aqueous electrolyte
This is a preview of subscription content, access via your institution.
Buying options





















References
Abulizi A, Yang GH, Okitsu K, Zhu J-J (2014) Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO4− in water under different pH conditions. Ultrason Sonochem 21(5):1629–1634. https://doi.org/10.1016/j.ultsonch.2014.03.030
Alfaruqi MH, Islam S, Mathew V, Song J, Kim S, Tung DP, Jo J, Kim S, Baboo JP, Xiu Z, Kim J (2017) Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl Surf Sci 404:435–442. https://doi.org/10.1016/j.apsusc.2017.02.009
Alfaruqi MH, Islam S, Putro DY, Mathew V, Kim S, Jo J, Kim S, Sun Y-K, Kim K, Kim J (2018) Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim Acta 276:1–11. https://doi.org/10.1016/j.electacta.2018.04.139
Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Herzog HJ, Jackson G, Kemper J, Krevor S, Maitland GC, Matuszewski M, Metcalfe IS, Petit C, Puxty G, Reimer J, Reiner DM, Rubin ES, Scott SA, Shah N, Smit B, Trusler JPM, Webley P, Wilcox J, Mac DN (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11(5):1062–1176. https://doi.org/10.1039/C7EE02342A
Capellán-Pérez I, Arto I, Polanco-Martínez JM, González-Eguino M, Neumann MB (2016) Likelihood of climate change pathways under uncertainty on fossil fuel resource availability. Energy Environ Sci 9(8):2482–2496. https://doi.org/10.1039/C6EE01008C
Carbajales-Dale M, Barnhart CJ, Benson SM (2014) Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ Sci 7(5):1538–1544. https://doi.org/10.1039/C3EE42125B
Chamoun M, Brant WR, Tai C-W, Karlsson G, Noréus D (2018) Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Mater 15:351–360. https://doi.org/10.1016/j.ensm.2018.06.019
Chen GZ (2017) Supercapacitor and supercapattery as emerging electrochemical energy stores. Int Mater Rev 62(4):173–202. https://doi.org/10.1080/09506608.2016.1240914
Chen S, Zhu J, Han Q, Zheng Z, Yang Y, Wang X (2009) Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst Growth Des 9(10):4356–4361. https://doi.org/10.1021/cg900223f
Cheng F, Zhao J, Song W, Li C, Ma H, Chen J, Shen P (2006) Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg Chem 45(5):2038–2044. https://doi.org/10.1021/ic051715b
Choi B, Panthi D, Kwon Y, Tsutsumi A (2015) Chemical charging on a MnO2 electrode of a fuel cell/battery system in a highly O2-dissolved electrolyte. Electrochim Acta 160:323–329. https://doi.org/10.1016/j.electacta.2015.02.023
Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162(1):727–734. https://doi.org/10.1016/j.jpowsour.2006.06.033
Corpuz RD, Ishida Y, Yonezawa T (2016) Controlling an electrostatic repulsion by oppositely charged surfactants towards positively charged fluorescent gold nanoclusters. Phys Chem Chem Phys 18(13):8773–8776. https://doi.org/10.1039/C6CP00538A
Corpuz RD, Ishida Y, Nguyen MT, Yonezawa T (2017a) Synthesis of positively charged photoluminescent bimetallic Au–Ag nanoclusters by double-target sputtering method on a biocompatible polymer matrix. Langmuir 33(36):9144–9150. https://doi.org/10.1021/acs.langmuir.7b02011
Corpuz RD, Ishida Y, Yonezawa T (2017b) Synthesis of cationically charged photoluminescent coinage metal nanoclusters by sputtering over a liquid polymer matrix. New J Chem 41(14):6828–6833. https://doi.org/10.1039/C7NJ01369H
Corpuz RD, De Juan LMZ, Praserthdam S, Pornprasertsuk R, Yonezawa T, Nguyen MT, Kheawhom S (2019) Annealing induced a well-ordered single crystal δ-MnO2 and its electrochemical performance in zinc-ion battery. Sci Rep 9:15107. https://doi.org/10.1038/s41598-019-51692-x
Daggash HA, Patzschke CF, Heuberger CF, Zhu L, Hellgardt K, Fennell PS, Bhave AN, Bardow A, Mac DN (2018) Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture. Sustain Energy Fuels 2(6):1153–1169. https://doi.org/10.1039/C8SE00061A
De Juan LMZ, Nguyen MT, Yonezawa T, Tokunaga T, Tsukamoto H, Ishida Y (2017) Structural control parameters for formation of single-crystalline β-Sn nanorods in organic phase. Cryst Growth Des 17(9):4554–4562. https://doi.org/10.1021/acs.cgd.7b00227
De Juan LMZ, Maggay IVB, Nguyen MT, Liu W-R, Yonezawa T (2018) β-Sn nanorods with active (001) tip induced LiF-Rich SEI layer for stable anode material in lithium ion battery. ACS Appl Nano Mater 1(7):3509–3519. https://doi.org/10.1021/acsanm.8b00664
De Juan-Corpuz LMZ, Nguyen MT, Corpuz RD, Yonezawa T, Rosero-Navarro NC, Tadanaga K, Tokunaga T, Kheawhom S (2019) Porous ZnV2O4 nanowire for stable and high-rate lithium-ion battery anodes. ACS Appl Nano Mater 2(7):4247–4256. https://doi.org/10.1021/acsanm.9b00703
Feynman R (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36
Fu J, Lee DU, Hassan FM, Yang L, Bai Z, Park MG, Chen Z (2015) Flexible high-energy polymer-electrolyte-based rechargeable zinc–air batteries. Adv Mater 27(37):5617–5622. https://doi.org/10.1002/adma.201502853
Fu J, Hassan FM, Li J, Lee DU, Ghannoum AR, Lui G, Hoque MA, Chen Z (2016) Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv Mater 28(30):6421–6428. https://doi.org/10.1002/adma.201600762
Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly Flexible, Printed Alkaline Batteries Based on Mesh-Embedded Electrodes. Adv Mater 23(29):3251–3255. https://doi.org/10.1002/adma.201100894
Han S-D, Kim S, Li D, Petkov V, Yoo HD, Phillips PJ, Wang H, Kim JJ, More KL, Key B, Klie RF, Cabana J, Stamenkovic VR, Fister TT, Markovic NM, Burrell AK, Tepavcevic S, Vaughey JT (2017) Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem Mater 29(11):4874–4884. https://doi.org/10.1021/acs.chemmater.7b00852
Haspert LC, Gillette E, Lee SB, Rubloff GW (2013) Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage. Energy Environ Sci 6(9):2578–2590. https://doi.org/10.1039/C3EE40898A
Hertzberg BJ, Huang A, Hsieh A, Chamoun M, Davies G, Seo JK, Zhong Z, Croft M, Erdonmez C, Meng YS, Steingart D (2016) Effect of multiple cation electrolyte mixtures on rechargeable Zn–MnO2 alkaline battery. Chem Mater 28(13):4536–4545. https://doi.org/10.1021/acs.chemmater.6b00232
Huang Y, Liu J, Huang Q, Zheng Z, Hiralal P, Zheng F, Ozgit D, Su S, Chen S, Tan P-H, Zhang S, Zhou H (2018a) Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. npj Flexible Electronics 2(1): 21. https://doi.org/10.1038/s41528-018-0034-0
Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, Xia Y (2018b) Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun 9(1):2906. https://doi.org/10.1038/s41467-018-04949-4
Huang Y, Mou J, Liu W, Wang X, Dong L, Kang F, Xu C (2019) Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+. Nano Micro Lett 11(1):49. https://doi.org/10.1007/s40820-019-0278-9
Ishida Y, Corpuz RD, Yonezawa T (2017a) Matrix sputtering method: a novel physical approach for photoluminescent noble metal nanoclusters. Acc Chem Res 50(12):2986–2995. https://doi.org/10.1021/acs.accounts.7b00470
Ishida Y, Nakabayashi R, Corpuz RD, Yonezawa T (2017b) Water-dispersible fluorescent silver nanoparticles via sputtering deposition over liquid polymer using a very short thiol ligand. Colloids Surf A Physicochem Eng Asp 518:25–29. https://doi.org/10.1016/j.colsurfa.2017.01.022
Julien MC, Mauger A (2017) Nanostructured MnO2 as electrode materials for energy storage. Nano 7(11). https://doi.org/10.3390/nano7110396
Juran TR, Young J, Smeu M (2018) Density functional theory modeling of MnO2 polymorphs as cathodes for multivalent ion batteries. J Phys Chem C 122(16):8788–8795. https://doi.org/10.1021/acs.jpcc.8b00918
Kao-ian W, Pornprasertsuk R, Thamyongkit P, Maiyalagan T, Kheawhom S (2019) Rechargeable Zinc-Ion battery based on choline chloride-urea deep eutectic solvent. J Electrochem Soc 166(6):A1063–A1069. https://doi.org/10.1149/2.0641906jes
Khamsanga S, Pornprasertsuk R, Yonezawa T, Mohamad AA, Kheawhom S (2019) δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci Rep 9(1):8441. https://doi.org/10.1038/s41598-019-44915-8
Khilari S, Pandit S, Ghangrekar MM, Das D, Pradhan D (2013) Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Adv 3(21):7902–7911. https://doi.org/10.1039/C3RA22569K
Konarov A, Voronina N, Jo JH, Bakenov Z, Sun Y-K, Myung S-T (2018) Present and future perspective on electrode materials for rechargeable Zinc-Ion batteries. Acs Energy Lett 3(10):2620–2640. https://doi.org/10.1021/acsenergylett.8b01552
Kraa O, Ghodbane H, Saadi R, Ayad MY, Becherif M, Aboubou A, Bahri M (2015) Energy management of fuel cell/supercapacitor hybrid source based on linear and sliding mode control. Energy Procedia 74:1258–1264. https://doi.org/10.1016/j.egypro.2015.07.770
Lao-atiman W, Julaphatachote T, Boonmongkolras P, Kheawhom S (2017) Printed transparent thin film Zn-MnO2 battery. J Electrochem Soc 164(4):A859–A863. https://doi.org/10.1149/2.1511704jes
Lao-atiman W, Bumroongsil K, Arpornwichanop A, Bumroongsakulsawat P, Olaru S, Kheawhom S (2019) Model-based analysis of an integrated Zinc-Air flow battery/zinc electrolyzer system. Frontiers in Energy Research 7(15). https://doi.org/10.3389/fenrg.2019.00015
Lee JS, Shin DH, Jang J (2015) Polypyrrole-coated manganese dioxide with multiscale architectures for ultrahigh capacity energy storage. Energy Environ Sci 8(10):3030–3039. https://doi.org/10.1039/C5EE02076J
Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C (2018) An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 11(4):941–951. https://doi.org/10.1039/C7EE03232C
Li Y, Fu J, Zhong C, Wu T, Chen Z, Hu W, Amine K, Lu J (2019) Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater 9(1):1802605. https://doi.org/10.1002/aenm.201802605
Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
Ma N, Wu P, Wu Y, Jiang D, Lei G (2019) Progress and perspective of aqueous zinc-ion battery. Funct Mater Lett 1930003. https://doi.org/10.1142/s1793604719300032
Mace MJ (2016) Mitigation commitments under the Paris agreement and the way forward. Climate Law 6(1–2):21. https://doi.org/10.1163/18786561-00601002
Maggay IVB, De Juan LMZ, Lu J-S, Nguyen MT, Yonezawa T, Chan T-S, Liu W-R (2018a) Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries. Sci Rep 8(1):8839. https://doi.org/10.1038/s41598-018-27083-z
Maggay IVB, De Juan LMZ, Nguyen MT, Yonezawa T, Chang BK, Chan TS, Liu W-R (2018b) ZnV2O4: a potential anode material for sodium-ion batteries. J Taiwan Inst Chem Eng 88:161–168. https://doi.org/10.1016/j.jtice.2018.03.052
Ming J, Guo J, Xia C, Wang W, Alshareef HN (2019) Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R Rep 135:58–84. https://doi.org/10.1016/j.mser.2018.10.002
Muruganantham R, Maggay IVB, Juan LMZD, Nguyen MT, Yonezawa T, Lin C-H, Lin Y-G, Liu W-R (2019) Electrochemical exploration of the effects of calcination temperature of a mesoporous zinc vanadate anode material on the performance of Na-ion batteries. Inorganic Chem Front. https://doi.org/10.1039/C9QI00494G
Nadal M, Barbir F (1996) Development of a hybrid fuel cell/battery powered electric vehicle. Int J Hydrog Energy 21(6):497–505. https://doi.org/10.1016/0360-3199(95)00102-6
Oakleaf JR, Kennedy CM, Baruch-Mordo S, Gerber JS, West PC, Johnson JA, Kiesecker J (2019) Mapping global development potential for renewable energy, fossil fuels, mining and agriculture sectors. Sci Data 6(1):101. https://doi.org/10.1038/s41597-019-0084-8
Okitsu K, Iwatani M, Nanzai B, Nishimura R, Maeda Y (2009) Sonochemical reduction of permanganate to manganese dioxide: The effects of H2O2 formed in the sonolysis of water on the rates of reduction. Ultrason Sonochem 16(3):387–391. https://doi.org/10.1016/j.ultsonch.2008.10.009
Okitsu K, Iwatani M, Okano K, Uddin MH, Nishimura R (2016) Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: Reactivities of reducing species formed by alcohol sonolysis. Ultrason Sonochem 31:456–462. https://doi.org/10.1016/j.ultsonch.2016.01.005
Oyedotun KO, Madito MJ, Momodu DY, Mirghni AA, Masikhwa TM, Manyala N (2018) Synthesis of ternary NiCo-MnO2 nanocomposite and its application as a novel high energy supercapattery device. Chem Eng J 335:416–433. https://doi.org/10.1016/j.cej.2017.10.169
Qiu N, Chen H, Yang Z, Sun S, Wang Y (2018) Low-cost birnessite as a promising cathode for high-performance aqueous rechargeable batteries. Electrochim Acta 272:154–160. https://doi.org/10.1016/j.electacta.2018.04.012
Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534:631. https://doi.org/10.1038/nature18307
Rogelj J, Fricko O, Meinshausen M, Krey V, Zilliacus JJJ, Riahi K (2017) Understanding the origin of Paris Agreement emission uncertainties. Nat Commun 8:15748. https://doi.org/10.1038/ncomms15748
Schmidt J, Gruber K, Klingler M, Klöckl C, Ramirez CL, Regner P, Turkovska O, Wehrle S, Wetterlund E (2019) A new perspective on global renewable energy systems: why trade in energy carriers matters. Energy Environ Sci 12(7):2022–2029. https://doi.org/10.1039/C9EE00223E
Sherrill SA, Banerjee P, Rubloff GW, Lee SB (2011) High to ultra-high power electrical energy storage. Phys Chem Chem Phys 13(46):20714–20723. https://doi.org/10.1039/C1CP22659B
Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47(22):8349–8402. https://doi.org/10.1039/C8CS00410B
Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C (2017) Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc 139(29):9775–9778. https://doi.org/10.1021/jacs.7b04471
Thounthong P, Chunkag V, Sethakul P, Davat B, Hinaje M (2009) Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. IEEE Trans Veh Technol 58(8):3892–3904. https://doi.org/10.1109/TVT.2009.2028571
Wang H-Q, Yang G-F, Li Q-Y, Zhong X-X, Wang F-P, Li Z-S, Li Y-H (2011) Porous nano-MnO2: large scale synthesis via a facile quick-redox procedure and application in a supercapacitor. New J Chem 35(2):469–475. https://doi.org/10.1039/C0NJ00712A
Wang Z, Mo F, Ma L, Yang Q, Liang G, Liu Z, Li H, Li N, Zhang H, Zhi C (2018) Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn–MnO2 battery and a flexible battery–sensor system. ACS Appl Mater Interfaces 10(51):44527–44534. https://doi.org/10.1021/acsami.8b17607
Wei C, Xu C, Li B, Du H, Kang F (2012) Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J Phys Chem Solids 73(12):1487–1491. https://doi.org/10.1016/j.jpcs.2011.11.038
Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. https://doi.org/10.1021/cr020730k
Xu C, Li B, Du H, Kang F (2012) Energetic Zinc Ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed 51(4):933–935. https://doi.org/10.1002/anie.201106307
Xu D, Li B, Wei C, He Y-B, Du H, Chu X, Qin X, Yang Q-H, Kang F (2014) Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim Acta 133:254–261. https://doi.org/10.1016/j.electacta.2014.04.001
Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11(10):4438–4442. https://doi.org/10.1021/nl2026635
Zeng Y, Zhang X, Meng Y, Yu M, Yi J, Wu Y, Lu X, Tong Y (2017) Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn–MnO2 battery. Adv Mater 29(26):1700274. https://doi.org/10.1002/adma.201700274
Zhang S (2013) Status, opportunities, and challenges of electrochemical energy storage. Front Energy Res 1:8. https://doi.org/10.3389/fenrg.2013.00008
Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J (2017) Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun 8(1):405. https://doi.org/10.1038/s41467-017-00467-x
Acknowledgments
The Thailand Research Fund (RSA6180008) and Rachadapisek Sompote Fund of Chulalongkorn University are acknowledged. RC and LD would like to thank the Postdoctoral Fellowship of Chulalongkorn University via Ratchadapisek Somphot Fund for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Corpuz, R.D., De Juan-Corpuz, L.M., Kheawhom, S. (2021). Manganese Dioxide (MnO2): A High-Performance Energy Material for Electrochemical Energy Storage Applications. In: Rajendran, S., Qin, J., Gracia, F., Lichtfouse, E. (eds) Metal and Metal Oxides for Energy and Electronics. Environmental Chemistry for a Sustainable World, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-53065-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-53065-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-53064-8
Online ISBN: 978-3-030-53065-5
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)