Skip to main content

Planar Cavity-Backed Antenna Prototype by Groove Waveguide Technique

  • Conference paper
  • First Online:
AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application (AETA 2019)

Abstract

A new Cavity-Backed Antenna prototype compatible with planar technology is presented is this paper. The topology and circuit design are presented. The antenna is completely manufactured in hard-aluminum. The Cavity-Backed Antenna prototype is designed by using Groove waveguide technique. The new antenna prototype consists of a slotted cavity fed by a microstrip line. Two prototypes were designed and manufactured. The first prototype was designed with three metal walls and the second prototype has been manufactured with two metal walls. In this new antenna prototype the specific slot patterns on the cavity back face such as edge slots and meandered are combined. An example with a minimum 10 dB return loss bandwidth of 1.3%, 6.5 dBi gain, and 21.2 dB front to back ratio has been presented. The new Cavity-Backed Antenna prototype can be used in hyperthermia treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo, G.Q., Hu, Z.F., Dong, L.X., Sun, L.L.: Planar slot antenna backed by substrate integrated waveguide cavity. IEEE Antennas Wirel. Propag. Lett. 7, 236–239 (2008)

    Article  Google Scholar 

  2. Yan, J., Xu, F., Cao, K., Qian, J.: Planar slot antenna based on triangle substrate integrated waveguide cavity. In: 2016 IEEE International Conference on Ubiquitous Wireless Broadband, pp. 1–3 (2016)

    Google Scholar 

  3. Pozar, D.M.: Microstrip antenna aperture-coupled to a microstripline. Electron. Lett. 21, 49–50 (1985)

    Article  Google Scholar 

  4. Azadegan, R., Member, S., Sarabandi, K.: A novel approach for miniaturization of slot antennas. IEEE Trans. Antennas Propag. 51(3), 421–429 (2003)

    Article  Google Scholar 

  5. Hong, W., Member, S., Behdad, N., Member, S., Sarabandi, K.: Size reduction of cavity-backed slot antennas. IEEE Trans. Antennas Propag. 54(5), 1461–1466 (2006)

    Article  Google Scholar 

  6. Andrés, C., et al.: Volume reduction of planar substrate integrated waveguide cavity-backed antennas. In: 2012 6th European Conference on Antennas Propagation, pp. 2919–2923 (2011)

    Google Scholar 

  7. Ghosh, B., Member, S., Haque, S.K.M., Yenduri, N.R.: Miniaturization of slot antennas using wire loading. IEEE Antennas Wirel. Propag. Lett. 12, 488–491 (2013)

    Article  Google Scholar 

  8. Kildal, P.S.: Artificially soft and hard surfaces in electromagnetics. Antennas Propag. IEEE Trans. 38, 1537–1544 (1990)

    Article  Google Scholar 

  9. Zaman, A.U., Kildal, P.: Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology. IEEE Trans. Antennas Propag. 62(6), 2992–3001 (2014)

    Article  Google Scholar 

  10. Al Sharkawy, M., Kishk, A.A.: Long slots array antenna based on ridge gap waveguide technology. IEEE Trans. Antennas Propag. 62(10), 5399–5403 (2014)

    Article  Google Scholar 

  11. Xi, J., Cao, B., Wang, H.: A novel 77 GHz circular polarization slot antenna using ridge gap waveguide technology. In: 2015 Asia-Pacific Microwave Conference, vol. 3, no. 61301024, pp. 1–3 (2015)

    Google Scholar 

  12. Sahu, A., Devabhaktuni, V., Aaen, P.H.: A slot antenna designed in ridge gap waveguide technology for v-band applications. In: 2015 IEEE MTT-S International Microwave RF Conference, pp. 385–387 (2015)

    Google Scholar 

  13. Zaman, A.U.: Slot antenna in ridge gap waveguide technology. In: 2012 6th European Conference on Antennas Propagation, pp. 3243–3244 (2011)

    Google Scholar 

  14. Zaman, A.U., Vukusic, T., Alexanderson, M., Kildal, P.: Design of a simple transition from microstrip to ridge gap waveguide suited for MMIC and antenna integration. IEEE Antennas Wirel. Propag. Lett. 12, 1558–1561 (2013)

    Article  Google Scholar 

  15. Zaman, A.U., Alfonso, E., Kildal, P.: Design of transition from coaxial line to ridge gap waveguide. In: 2009 IEEE Antennas and Propagation Society International Symposium, no. 1, pp. 1–4 (2009)

    Google Scholar 

  16. Giner, S.M., Valero-nogueira, A., Herruzo, J.I.H.: Excitation of untilted narrow-wall slot in groove gap waveguide by using a parasitic dipole. In: 2013 7th European Conference on Antennas Propagation, pp. 3082–3085 (2013)

    Google Scholar 

  17. Merunka, I., Fiser, O., Vojackova, L., Vrba, J., Vrba, D.: Utilization potential of balanced antipodal Vivaldi antenna for microwave hyperthermia treatment of breast cancer. In: 8th European Conference on Antennas Propagation, EuCAP 2014, vol. 6, no. EuCAP, pp. 706–710 (2014)

    Google Scholar 

  18. Korkmaz, E., Isık, O., Sagkol, H.: A directive antenna array applicator for focused electromagnetic hyperthermia treatment of breast cancer. In: 2015 9th European Conference on Antennas Propagation, vol. 1, pp. 1–4 (2015)

    Google Scholar 

  19. Chakaravarthi, G., Arunachalam, K.: Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Int. J. Hyperth. 31(7), 737–748 (2015)

    Article  Google Scholar 

  20. Curto, S., Ruvio, G., Ammann, M.J., Prakash, P.: A wearable applicator for microwave hyperthermia of breast cancer: performance evaluation with patient-specific anatomic models. In: Proceedings of 2015 International Conference on Electromagnetics in Advanced Applications ICEAA 2015, pp. 1159–1162 (2015)

    Google Scholar 

  21. Merunka, I., Fiser, O., Vojackova, L., Vrba, J., Vrba, D.: Microwave hyperthermia treatment of neck cancer using eight UWB antennas. In: European Microwave Week 2014: Connecting the Future, EuMW 2014 - Conference Proceedings; EuMC 2014: 44th European Microwave Conference, pp. 790–793 (2014)

    Google Scholar 

  22. Li, J., Wang, X.: Comparison of two small circularly polarized antennas for focused microwave hyperthermia. In: 2019 13th European Conference on Antennas Propagation, no. EuCAP, pp. 5–8 (2019)

    Google Scholar 

  23. Stang, J., Haynes, M., Carson, P., Moghaddam, M.: A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Trans. Biomed. Eng. 59(9), 2431–2438 (2012)

    Article  Google Scholar 

  24. Vrba, D., Vrba, J.: Applicators for local microwave hyperthermia based on metamaterial technology. In: 8th European Conference on Antennas Propagation, EuCAP 2014, no. EuCAP, pp. 68–71 (2014)

    Google Scholar 

  25. Tao, Y., Wang, G.: Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator. IEEE Trans. Biomed. Eng. 59(12), 3525–3530 (2012)

    Article  Google Scholar 

  26. Pozar, D.M.: Microwave Engineering, 3rd edn, pp. 298–303. Wiley, Hoboken (2005)

    Google Scholar 

  27. Bohórquez, J.C., et al.: Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas Wirel. Propag. Lett. 8, 1139–1142 (2009)

    Article  Google Scholar 

  28. Cheng Hao, Z., Hong, W., Ping Chen, X., Xin Chen, J., Wu, K., Jun Cui, T.: Multilayered substrate integrated waveguide (MSIW) elliptic filter. In: IEEE Microwave and Wireless Components Letters, vol. 15, no. 2, pp. 95–97 (2005)

    Google Scholar 

  29. Boria, V.E., Sánchez-Escuderos, D., Bernardo-Clemente, B., Berenguer, A., Baquero-Escudero, M.: Groove gap waveguide as an alternative to rectangular waveguide for H-plane components. Electron. Lett. 52(11), 939–941 (2016)

    Article  Google Scholar 

  30. Zaman, A.U., Kildal, P.: GAP Waveguides. In: Handbook of Antenna Technologies, Singapore, pp. 3273–3347 (2016)

    Google Scholar 

  31. Nawaz, M.I., Huiling, Z., Kashif, M.: Substrate integrated waveguide (SIW) to microstrip transition at x-band. In: Proceedings of 2014 International Conference on Circuits, Systems Control, pp. 61–63 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Guarnizo Mendez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guarnizo Mendez, H.F., Polochè Arango, M.A., Rubiano Suazo, T.A., Rojas Martínez, S.H., Gutiérrez Bernal, F.J. (2021). Planar Cavity-Backed Antenna Prototype by Groove Waveguide Technique. In: Cortes Tobar, D., Hoang Duy, V., Trong Dao, T. (eds) AETA 2019 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2019. Lecture Notes in Electrical Engineering, vol 685. Springer, Cham. https://doi.org/10.1007/978-3-030-53021-1_52

Download citation

Publish with us

Policies and ethics