Skip to main content

Antioxidant Profile of Legume Seeds

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 45

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 45))

Abstract

Legume seeds contain antioxidant compounds that prevent or slow down the oxidation process generally by donating electrons to free radicals. These compounds are primarily phenolic acids, flavonoids, saponins, tocopherols and vitamin C. Antioxidant potential of legume seeds is directly related with their chemical structure as well as the position of functional groups in various compounds. Most reports have suggested that legumes with colored seed coats possess strong antioxidant potential owing to the presence of high content of antioxidants.

Here we review information on the antioxidant components, impact of processing ways on antioxidants as well as their activities in legume seeds. Most researchers have primarily determined the in vitro antioxidant activity of legumes using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, oxygen radical absorbance capacity and ferric reducing antioxidant power assays. Processing such as dehusking as well as dehulling, soaking, cooking, germination and fermentation changes the level and nature of antioxidants and their activities in grain legume seeds. The antioxidants present in legumes have been shown to reduce ageing as well as incidence of diseases including cancer, diabetes and cardiac problems. These antioxidants and their activities make them suitable dietary and functional food components for the prevention and management of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera Y, Dueñas M, Estrella I, Hernández T, Benitez V, Esteban RM, Martín-Cabrejas MA (2010) Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J Agric Food Chem 58(18):10101–10108

    CAS  PubMed  Google Scholar 

  • Aguilera Y, Estrella I, Benitez V, Esteban RM, Martín-Cabrejas MA (2011) Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Res Int 44:774–780

    CAS  Google Scholar 

  • Alshikh N, de Camargo AC, Shahidi F (2015) Phenolics of selected lentil cultivars: antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J Funct Foods 18:1022–1038

    CAS  Google Scholar 

  • Amarowicz R, Pegg RB (2008) Legumes as a source of natural antioxidants. Eur J Lipid Sci Technol 110:865–878

    CAS  Google Scholar 

  • Amarowicz R, Shahidi F (2017) Antioxidant activity of broad bean seed extract and its phenolic composition. J Funct Foods 38:656–662

    CAS  Google Scholar 

  • Amarowicz R, Estrella I, HernANdez T, Troszyńska A (2008) Antioxidant activity of extract of adzuki bean and its fractions. J Food Lipids 15(1):119–136

    CAS  Google Scholar 

  • Attree R, Du B, Xu B (2015) Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind Crop Prod 67:448–456

    CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    CAS  Google Scholar 

  • Barroga CF, Laurena AC, Mendoza EMT (1985) Polyphenols in mung bean (Vigna radiata (L.) Wilczek): determination and removal. J Agric Food Chem 33(5):1006–1009

    CAS  Google Scholar 

  • Bartolomé B, Estrella I, Hernandez T (1997) Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Z Lebensm Unters Forsch A 205(4):290–294

    Google Scholar 

  • Berger M, Küchler T, Maaßen A, Busch-Stockfisch M, Steinhart H (2007) Correlations of ingredients with sensory attributes in green beans and peas under different storage conditions. Food Chem 103(3):875–884

    CAS  Google Scholar 

  • Bressani A, Elias LG (1980) The nutritional role of polyphenols in beans. In: Hulse JH (ed) Polyphenols in cereal and legumes. International Development Research Center, Ottawa, pp 61–68

    Google Scholar 

  • Chen PX, Tang Y, Marcone MF, Pauls PK, Zhang B, Liu R, Tsao R (2015a) Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular-and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem 185:298–308

    CAS  PubMed  Google Scholar 

  • Chen PX, Dupuis JH, Marcone MF, Pauls PK, Liu R, Liu Q, Tang Y, Zhang B, Tsao R (2015b) Physicochemical properties and in vitro digestibility of cooked regular and nondarkening cranberry beans (Phaseolus vulgaris L.) and their effects on bioaccessibility, phenolic composition, and antioxidant activity. J Agric Food Chem 63(48):10448–10458

    CAS  PubMed  Google Scholar 

  • Deshpande SS, Sathe SK, Salunkhe DK, Cornforth DP (1982) Effects of dehulling on phytic acid, polyphenols and enzyme inhibitors of dry beans (Phaseolus vulgaris). J Food Sci 47(6):1846–1850

    CAS  Google Scholar 

  • Díaz-Batalla L, Widholm JM, Fahey GC, Castaño-Tostado E, Paredes-López O (2006) Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J Agric Food Chem 54(6):2045–2052

    PubMed  Google Scholar 

  • Doblado R, Zielinski H, Piskula M, Kozlowska H, Muñoz R, Frías J, Vidal-Valverde C (2005) Effect of processing on the antioxidant vitamins and antioxidant capacity of Vigna sinensis var. carilla. J Agric Food Chem 53(4):1215–1222

    CAS  PubMed  Google Scholar 

  • Dueñas M, Estrella I, Hernández T (2004) Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur Food Res Technol 219(2):116–123

    Google Scholar 

  • Dueñas M, Fernández D, Hernández T, Estrella I, Muñoz R (2005) Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric 85(2):297–304

    Google Scholar 

  • Dueñas M, Hernández T, Estrella I (2006) Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation their phenolic contents. Food Chem 98:95–103

    Google Scholar 

  • Dueñas M, Sarmento T, Aguilera Y, Benitez V, Mollá E, Esteban RM, Martín-Cabrejas MA (2016) Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT Food Sci Technol 66:72–78

    Google Scholar 

  • Favell DJ (1998) A comparison of the vitamin C content of fresh and frozen vegetables. Food Chem 62(1):59–64

    CAS  Google Scholar 

  • Fenwick DE, Oakenfull D (1983) Saponin content of food plants and some prepared foods. J Sci Food Agric 34:186–191

    CAS  PubMed  Google Scholar 

  • Fernandez-Orozco R, Zieliński H, Piskuła MK (2003) Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Mol Nutr Food Res 47(5):291–299

    CAS  Google Scholar 

  • Fernandez-Orozco R, Frias J, Zielinski H, Muñoz R, Piskula MK, Kozlowska H, Vidal-Valverde C (2009) Evaluation of bioprocesses to improve the antioxidant properties of chickpeas. LWT Food Sci Technol 42(4):885–892

    CAS  Google Scholar 

  • Frias J, Miranda ML, Doblado R, Vidal-Valverde C (2005) Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chem 92(2):211–220

    CAS  Google Scholar 

  • Gan RY, Deng ZQ, Yan AX, Shah NP, Lui WY, Chan CL, Corke H (2016) Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT Food Sci Technol 73:168–177

    CAS  Google Scholar 

  • Gan RY, Lui WY, Wu K, Chan CL, Dai SH, Sui ZQ, Corke H (2017) Bioactive compounds and bioactivities of germinated edible seeds and sprouts: an updated review. Trends Food Sci Technol 59:1–14

    CAS  Google Scholar 

  • García-Lafuente A, Moro C, Manchón N, Gonzalo-Ruiz A, Villares A, Guillamón E, Rostagno M, Mateo-Vivaracho L (2014) In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem 161:216–223

    PubMed  Google Scholar 

  • Grela ER, Günter KD (1995) Fatty acid composition and tocopherol content of some legume seeds. Anim Feed Sci Technol 52:325–331

    CAS  Google Scholar 

  • Guajardo-Flores D, García-Patiño M, Serna-Guerrero D, Gutiérrez-Uribe JA, Serna-Saldívar SO (2012) Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem 134:1312–1319

    CAS  PubMed  Google Scholar 

  • Han KH, Kitano-Okada T, Seo JM, Kim SJ, Sasaki K, Shimada KI, Fukushima M (2015) Characterisation of anthocyanins and proanthocyanidins of adzuki bean extracts and their antioxidant activity. J Funct Foods 14:692–701

    CAS  Google Scholar 

  • Hubert J, Berger M, Nepveu F, Paul F, Dayde J (2008) Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem 109(4):709–721

    CAS  PubMed  Google Scholar 

  • Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356

    CAS  PubMed  Google Scholar 

  • Jin AL, Ozga JA, Lopes-Lutz D, Schieber A, Reinecke DM (2012) Characterization of proanthocyanidins in pea (Pisum sativum L.), lentil (Lens culinaris L.), and faba bean (Vicia faba L.) seeds. Food Res Int 46(2):528–535

    CAS  Google Scholar 

  • Jood S, Chauhan BM, Kapoor AC (1986) Saponin content of chickpea and black gram: varietal differences and effects of processing and cooking methods. J Sci Food Agric 37:1121–1124

    CAS  Google Scholar 

  • Kaack K (1994) Blanching of green bean (Phaseolus vulgaris). Plant Foods Hum Nutr (Formerly Qualitas Plantarum) 46(4):353–360

    CAS  Google Scholar 

  • Kagan V, Serbinova E, Packer L (1990) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem Biophys Res Commun 169(3):851–857

    CAS  PubMed  Google Scholar 

  • Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 121(3):682–690

    CAS  Google Scholar 

  • Kan L, Nie S, Hu J, Wang S, Cui SW, Li Y, Xu S, Wu Y, Wang J, Bai Z, Xie M (2017) Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food Chem Toxicol 108:467–477

    CAS  PubMed  Google Scholar 

  • Kmiecik W, Lisiewska Z, Jaworska G (1990) Vitamin C level in fresh, frozen and canned broad bean in relation to their varieties and degree of maturity. Roczn PZH 41:17–24

    CAS  Google Scholar 

  • Korus A, Lisiewska Z, Kmiecik W (2002) Effect of freezing and canning on the content of selected vitamins and pigments in seeds of two grass pea (Lathyrus sativus L.) cultivars at the not fully mature stage. Mol Nutr Food Res 46(4):233–237

    CAS  Google Scholar 

  • Lásztity R, Hidvégi M, Bata A (1998) Saponins in food. Food Res Int 14(4):371–390

    Google Scholar 

  • Lee JH, Jeon JK, Kim SG, Kim SH, Chun T, Imm JY (2011) Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. Int J Food Sci Technol 46(12):2513–2519

    CAS  Google Scholar 

  • Limón RI, Peñas E, Torino MI, Martínez-Villaluenga C, Dueñas M, Frias J (2015) Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chem 172:343–352

    PubMed  Google Scholar 

  • Lin PY, Lai HM (2006) Bioactive compounds in legumes and their germinated products. J Agric Food Chem 54(11):3807–3814

    CAS  PubMed  Google Scholar 

  • Lin LZ, Harnly JM, Pastor-Corrales MS, Luthria DL (2008) The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107(1):399–410

    CAS  PubMed  PubMed Central  Google Scholar 

  • López A, El-Naggar T, Dueñas M, Ortega T, Estrella I, Hernández T, Gómez-Serranillos MP, Palomino OM, Carretero ME (2013) Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem 138(1):547–555

    PubMed  Google Scholar 

  • López-Amorós ML, Hernández T, Estrella I (2006) Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Compos Anal 19(4):277–283

    Google Scholar 

  • López-Martínez LX, Leyva-López N, Gutiérrez-Grijalva EP, Heredia JB (2017) Effect of cooking and germination on bioactive compounds in pulses and their health benefits. J Funct Foods 38:624–634

    Google Scholar 

  • Luo J, Cai W, Tong W, Xu B (2016) Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiata L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem 201:350–360

    CAS  PubMed  Google Scholar 

  • Madhujith T, Amarowicz R, Shahidi F (2004) Phenolic antioxidants in beans and their effects on inhibition of radical-induced DNA damage. J Am Oil Chem Soc 81(7):691–696

    CAS  Google Scholar 

  • Magalhães SC, Taveira M, Cabrita AR, Fonseca AJ, Valentão P, Andrade PB (2017) European marketable grain legume seeds: further insight into phenolic compounds profiles. Food Chem 215:177–184

    PubMed  Google Scholar 

  • Mirali M, Ambrose SJ, Woods SA, Vandenberg A, Purves RW (2014) Development of a fast extraction method and optimization of liquid chromatography– mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J Chromatogr B 969:149–161

    CAS  Google Scholar 

  • Moriyama M, Oba K (2008) Comparative study on the vitamin C contents of the food legume seeds. J Nutr Sci Vitaminol 54(1):1–6

    CAS  PubMed  Google Scholar 

  • Murakami H, Asakawa T, Terao J, Matsushita S (1984) Antioxidative stability of tempeh and liberation of isoflavones by fermentation. Agric Biol Chem 48(12):2971–2975

    CAS  Google Scholar 

  • Nilsson J, Stegmark R, Åkesson B (2004) Total antioxidant capacity in different pea (Pisum sativum) varieties after blanching and freezing. Food Chem 86(4):501–507

    CAS  Google Scholar 

  • Rocha-Guzmán NE, González-Laredo RF, Ibarra-Pérez FJ, Nava-Berumen CA, Gallegos-Infante JA (2007) Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaseolus vulgaris L.) cultivars. Food Chem 100(1):31–35

    Google Scholar 

  • Sattar A, Atta S, Akhtar MA, Wahid M, Ahmad B (1991) Biosynthesis of ascorbic acid and riboflavin in radiated germinating chickpea. Int J Vitam Nutr Res 61(2):149–154

    CAS  PubMed  Google Scholar 

  • Segev A, Badani H, Kapulnik Y, Shomer I, Oren-Shamir M, Galili S (2010) Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). J Food Sci 75(2):S115–S119

    CAS  PubMed  Google Scholar 

  • Siah SD, Konczak I, Agboola S, Wood JA, Blanchard CL (2012) In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Br J Nutr 108(S1):S123–S134

    CAS  PubMed  Google Scholar 

  • Singh U, Singh B (1992) Tropical grain legumes as important human foods. Econ Bot 46(3):310–321

    Google Scholar 

  • Singh B, Singh JP, Shevkani K, Singh N, Kaur A (2017a) Bioactive constituents in pulses and their health benefits. J Food Sci Technol 54(4):858–870

    CAS  PubMed  Google Scholar 

  • Singh B, Singh JP, Kaur A, Singh N (2017b) Phenolic composition and antioxidant potential of grain legume seeds: a review. Food Res Int 101:1–16

    CAS  PubMed  Google Scholar 

  • Singh B, Singh JP, Singh N, Kaur A (2017c) Saponins in pulses and their health promoting activities: a review. Food Chem 233:540–549

    CAS  PubMed  Google Scholar 

  • Sosulski FW, Dabrowski KJ (1984) Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J Agric Food Chem 32(1):131–133

    CAS  Google Scholar 

  • Torino MI, Limón RI, Martínez-Villaluenga C, Mäkinen S, Pihlanto A, Vidal- Valverde C et al (2013) Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 136:1030–1037

    CAS  PubMed  Google Scholar 

  • Torres A, Frias J, Granito M, Vidal-Valverde C (2006) Fermented pigeon pea (Cajanus cajan) ingredients in pasta products. J Agric Food Chem 54(18):6685–6691

    CAS  PubMed  Google Scholar 

  • Tsuda T, Ohshima K, Kawakishi S, Osawa T (1994) Antioxidative pigments isolated from the seed of Phaseolus vulgaris L. J Agric Food Chem 42:248–251

    CAS  Google Scholar 

  • Turkmen N, Sari F, Velioglu S (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93:713–718

    CAS  Google Scholar 

  • Vanderslice JT, Higgs DJ, Hayes JM, Block G (1990) Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. J Food Compos Anal 3(2):105–118

    CAS  Google Scholar 

  • Volf I, Ignat I, Neamtu M, Popa VI (2014) Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem Pap 68(1):121–129

    CAS  Google Scholar 

  • Wang N, Hatcher DW, Toews R, Gawalko EJ (2009) Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT Food Sci Technol 42(4):842–848

    CAS  Google Scholar 

  • Wang YK, Zhang X, Chen GL, Yu J, Yang LQ, Gao YQ (2016) Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J Funct Foods 24:359–372

    CAS  Google Scholar 

  • Wojtyla Ł, Garnczarska M, Zalewski T, Bednarski W, Ratajczak L, Jurga S (2006) A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. J Plant Physiol 163(12):1207–1220

    CAS  PubMed  Google Scholar 

  • Wyatt CJ, Carballido SP, Mendez RO (1998) α-and γ-tocopherol content of selected foods in the Mexican diet: effect of cooking losses. J Agric Food Chem 46(11):4657–4661

    CAS  Google Scholar 

  • Xu BJ, Chang SKC (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72(2):S159–S166

    CAS  PubMed  Google Scholar 

  • Xu B, Chang SK (2008) Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem 110(1):1–13

    CAS  PubMed  Google Scholar 

  • Xu B, Chang SK (2009) Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57:4754–4764

    CAS  PubMed  Google Scholar 

  • Xu B, Chang SK (2010) Phenolic substance characterization and chemical and cell based antioxidant activities of 11 lentils grown in the northern United States. J Agric Food Chem 58(3):1509–1517

    CAS  PubMed  Google Scholar 

  • Xu B, Yuan S, Chang S (2007) Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 72:S167–S177

    Google Scholar 

  • Yoshiki Y, Kim JH, Okubo K (1994) Saponins conjugated with 2,3-dihydro- 2,5-dihydroxy-6-methyl-4H-pyran-4-one from Phaseolus coccineus. Phytochemistry 36:1009–1012

    CAS  PubMed  Google Scholar 

  • Zhang B, Deng Z, Tang Y, Chen PX, Liu R, Ramdath DD, Liu Q, Hernandez M, Tsao R (2014) Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris). J Agric Food Chem 62(52):12585–12594

    CAS  PubMed  Google Scholar 

  • Zhao Y, Du SK, Wang H, Cai M (2014) In vitro antioxidant activity of extracts from common legumes. Food Chem 152:462–466

    CAS  PubMed  Google Scholar 

  • Zielinski H (2002) Peroxyl radical-trapping capacity of germinated legume seeds. Mol Nutr Food Res 46(2):100–104

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grants Commission, New Delhi for providing financial assistance.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, B., Singh, J.P., Kaur, A., Kaur, A., Singh, N. (2020). Antioxidant Profile of Legume Seeds. In: Guleria, P., Kumar, V., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 45. Sustainable Agriculture Reviews, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-53017-4_4

Download citation

Publish with us

Policies and ethics