Skip to main content

Conic Programming Approach to Reduce Congestion Ratio in Communications Network

  • Conference paper
  • First Online:
Cyber Security and Computer Science (ICONCS 2020)

Abstract

This research introduce a robust optimization model to reduce the congestion ratio in communications network considering uncertainty in the traffic demands. The propose formulation is depended on a model called the pipe model. Network traffic demand is fixed in the pipe model and most of the previous researches consider traffic fluctuation locally. Our proposed model can deal with fluctuation in the traffic demands and considers this fluctuation all over the network. We formulate the robust optimization model in the form of second-order cone programming (SOCP) problem which is tractable by optimization software. The numerical experiments determine the efficiency of our model in terms of reducing the congestion ratio compared to the others model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, B.C., Takahashi, S., Oki, E., Muramatsu, M.: Network congestion minimization models based on robust optimization. IEICE Trans. Commun. E101-B(3), 772–784 (2018). https://doi.org/10.1587/transcom.2017EBP3193

  2. Oki, E., Iwaki, A.: Performance comparisons of optimal routing by pipe, hose and intermediate models. In: Proceedings of IEEE Sarnoff Symposium (Sarnoff 2009), pp. 1–5, March/April 2009. https://doi.org/10.1109/SARNOF.2009.4850317

  3. Xu, J., Yang, J.Z., Guo, C., Lee, Y.-H., Lu, D.: Routing algorithm of minimizing maximum link congestion on grid networks. Wireless Netw. 21(5), 1713–1732 (2014). https://doi.org/10.1007/s11276-014-0878-8

    Article  Google Scholar 

  4. Wang, Y., Wang, Z.: Explicit routing algorithms for internet traffic engineering. In: IEEE International Conference on Computer Communications and Networks (ICCCN) (1999). https://doi.org/10.1109/ICCCN.1999.805577

  5. Juttner, A., Szabo, I., Szentesi, A.: On bandwidth efficiency of the hose resource management model in virtual private networks. In: IEEE Infocom 2003, pp. 386–395, March/April (2003). https://doi.org/10.1109/INFCOM.2003.1208690

  6. Duffield, N.G., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan, K.K., Merwe, J.E.: Resource management with hose: point-to-cloud services for virtual private networks. IEEE/ACM Trans. Netw. 10(5), 679–692 (2002). https://doi.org/10.1109/TNET.2002.803918

    Article  Google Scholar 

  7. Kumar, A., Rastogi, R., Silberschatz, A., Yener, B.: Algorithms for provisioning virtual private networks in the hose model. IEEE/ACM Trans. Networking 10(4), 565–578 (2002). https://doi.org/10.1109/TNET.2002.802141

    Article  Google Scholar 

  8. Li, C., Xie, R., Huang, T., Liu, Y.: Jointly optimal congestion control, forwarding strategy and power control for named-data multihop wireless network. IEEE Access 5, 1013–1026 (2017). https://doi.org/10.1109/ACCESS.2016.2634525

    Article  Google Scholar 

  9. Singhal, P., Yadav, A.: Congestion detection in wireless sensor network using neural network. In: International Conference for Convergence for Technology-2014, April 2015. https://doi.org/10.1109/I2CT.2014.7092259

  10. Das, B.C., Oki, E., Muramatsu, M.: Comparative performance of green pipe, green hose, and green hose-rectangle models in power efficient network. In: IEEE ComSoc International Communications Quality and Reliability Workshop, pp. 1–6 (2018). https://doi.org/10.1109/CQR.2018.8445921

  11. Chu, J., Lea, C.: Optimal link weights for maximizing QoS traffic. In: IEEE ICC 2007, pp. 610–615 (2007). https://doi.org/10.1109/ICC.2007.105

  12. Chu, J., Lea, C.: Optimal link weights for maximizing QoS traffic. IEEE/ACM Trans. Netw. 17(3), 778–788 (2009)

    Article  Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Approximation and Fitting in Convex Optimization, pp. 318–324. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  14. Pedroso, J.P., Rais, A., Kubo, M., Muramatsu, M.: Second-order cone optimization. In: Mathematical Optimization: Solving Problems Using Gurobi and Python, pp. 108–115, September 2012

    Google Scholar 

  15. Das, B.C., Oki, E., Muramatsu, M.: A simple SOCP formulation of minimization of network congestion ratio, RIMS Kokyuroku 2027, Kyoto University, Kyoto, Japan, vol. 2027, pp. 52–59, April 2017

    Google Scholar 

  16. Nesterov, Y., Nemirovsky, A.: Interior-point polynomial methods in convex programming. Studies in Applied Mathematics, vol. 13. SIAM, Philadelphia (1994)

    Google Scholar 

  17. Boyd, S., Vandenberghe, L.: Interior-point methods. In: Convex Optimization. Cambridge University Press, Cambridge (2005), chap. 11, sect. 11.7, pp. 609–614 (2005)

    Google Scholar 

  18. Gurobi Optimization. Verison: 6.5.2, October Sky (2015). http://www.gurobi.com

  19. Solving Constraint Integer Programs. http://scip.zib.de

  20. Explore IBM software and Solutions. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

  21. Ouedraogo, I.A., Oki, E.: A green and robust optimization strategy for energy saving against traffic uncertainty. IEEE J. Sel. Areas Commun. 34(5), 1405–1416 (2016). https://doi.org/10.1109/JSAC.2016.2545378

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Chandra Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Das, B.C., Begum, M., Uddin, M.M., Rahman, M.M. (2020). Conic Programming Approach to Reduce Congestion Ratio in Communications Network. In: Bhuiyan, T., Rahman, M.M., Ali, M.A. (eds) Cyber Security and Computer Science. ICONCS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 325. Springer, Cham. https://doi.org/10.1007/978-3-030-52856-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52856-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52855-3

  • Online ISBN: 978-3-030-52856-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics